Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1988, Volume 44, Issue 5, Pages 697–699 (Mi mz4224)  

This article is cited in 5 scientific papers (total in 5 papers)

Brief Communications

Local resonance in a weakly nonlinear problem

L. A. Kalyakin


Full text: PDF file (263 kB)

Bibliographic databases:
Received: 21.06.1987

Citation: L. A. Kalyakin, “Local resonance in a weakly nonlinear problem”, Mat. Zametki, 44:5 (1988), 697–699

Citation in format AMSBIB
\Bibitem{Kal88}
\by L.~A.~Kalyakin
\paper Local resonance in a weakly nonlinear problem
\jour Mat. Zametki
\yr 1988
\vol 44
\issue 5
\pages 697--699
\mathnet{http://mi.mathnet.ru/mz4224}
\zmath{https://zbmath.org/?q=an:0702.35226}


Linking options:
  • http://mi.mathnet.ru/eng/mz4224
  • http://mi.mathnet.ru/eng/mz/v44/i5/p697

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. A. Kalyakin, S. G. Glebov, “On the solvability of nonlinear equations of Shrödinger type in the class of rapidly oscillating functions”, Math. Notes, 56:1 (1994), 673–678  mathnet  crossref  mathscinet  zmath  isi
    2. S. G. Glebov, “Resonance layers in the interactions of rapidly oscillating wave fields”, Theoret. and Math. Phys., 118:3 (1999), 295–300  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. S. G. Glebov, O. M. Kiselev, V. A. Lazarev, “Birth of solitons during passage through local resonance”, Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S84–S90  mathnet  mathscinet  zmath  elib
    4. Khakimova Z.R., “Prokhozhdenie lokalnogo rezonansa lineinoi dispergiruyuschei volnoi”, Vestnik Chelyabinskogo gosudarstvennogo universiteta, 2011, no. 27, 113–123  elib
    5. Z. R. Khakimova, “Prokhozhdenie lokalnogo rezonansa lineinoi dispergiruyuschei volnoi”, Vestnik ChelGU, 2011, no. 14, 113–123  mathnet
  • Математические заметки Mathematical Notes
    Number of views:
    This page:152
    Full text:64
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021