Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1988, Volume 44, Issue 1, Pages 149–152 (Mi mz4294)  

This article is cited in 3 scientific papers (total in 3 papers)

Brief Communications

Quantization rule for the nonlinear Schrödinger equation in an exterior field

A. V. Pereskokov


Full text: PDF file (329 kB)

Bibliographic databases:
Received: 15.02.1988

Citation: A. V. Pereskokov, “Quantization rule for the nonlinear Schrödinger equation in an exterior field”, Mat. Zametki, 44:1 (1988), 149–152

Citation in format AMSBIB
\Bibitem{Per88}
\by A.~V.~Pereskokov
\paper Quantization rule for the nonlinear Schr\"odinger equation in an exterior field
\jour Mat. Zametki
\yr 1988
\vol 44
\issue 1
\pages 149--152
\mathnet{http://mi.mathnet.ru/mz4294}
\zmath{https://zbmath.org/?q=an:0662.34032}


Linking options:
  • http://mi.mathnet.ru/eng/mz4294
  • http://mi.mathnet.ru/eng/mz/v44/i1/p149

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Karasev, A. V. Pereskokov, “On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule”, Russian Acad. Sci. Izv. Math., 42:3 (1994), 501–560  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. B. I. Suleimanov, I. T. Habibullin, “Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes”, Theoret. and Math. Phys., 97:2 (1993), 1250–1258  mathnet  crossref  mathscinet  zmath  isi
    3. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. I. The model with logarithmic singularity”, Izv. Math., 65:5 (2001), 883–921  mathnet  crossref  crossref  mathscinet  zmath
  • Математические заметки Mathematical Notes
    Number of views:
    This page:312
    Full text:111
    First page:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021