RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2008, Volume 84, Issue 6, Pages 874–881 (Mi mz4443)  

Conservation Laws of Second Order for the Born–Infeld Equation and Other Related Equations

O. F. Men'shikh

S. P. Korolyov Samara State Aerospace University

Abstract: We describe a class of quasilinear partial differential equations of second order with two independent variables in the general case of mixed type for which we construct conservation laws of second order which are quadratic with respect to the second derivatives. As examples, we present similar conservation laws for the Born–Infeld equation, for the equations of minimal and maximal surfaces in Minkowski space, and for the classical equation of minimal surfaces.

Keywords: quasilinear partial differential equation, Born–Infeld equation, conservation laws of second order, Minkowski space, Abel equation, Laplace equation

DOI: https://doi.org/10.4213/mzm4443

Full text: PDF file (394 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2008, 84:6, 814–820

Bibliographic databases:

UDC: 517.95
Received: 06.12.2005

Citation: O. F. Men'shikh, “Conservation Laws of Second Order for the Born–Infeld Equation and Other Related Equations”, Mat. Zametki, 84:6 (2008), 874–881; Math. Notes, 84:6 (2008), 814–820

Citation in format AMSBIB
\Bibitem{Men08}
\by O.~F.~Men'shikh
\paper Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 6
\pages 874--881
\mathnet{http://mi.mathnet.ru/mz4443}
\crossref{https://doi.org/10.4213/mzm4443}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2492802}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 6
\pages 814--820
\crossref{https://doi.org/10.1134/S0001434608110242}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000262855600024}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749105152}


Linking options:
  • http://mi.mathnet.ru/eng/mz4443
  • https://doi.org/10.4213/mzm4443
  • http://mi.mathnet.ru/eng/mz/v84/i6/p874

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:389
    Full text:131
    References:34
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020