RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2010, Volume 87, Issue 3, Pages 429–442 (Mi mz4508)  

This article is cited in 3 scientific papers (total in 3 papers)

Approximation of Classes $B^r_{p,\theta}$ of Periodic Functions of One and Several Variables

A. S. Romanyuk

Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: We obtain order-sharp estimates of best approximations to the classes $B^r_{p,\theta}$ of periodic functions of several variables in the space $L_q$, $1\le p,q\le\infty$, by trigonometric polynomials with “numbers” of harmonics from step hyperbolic crosses. In the one-dimensional case, we establish the order of deviation of Fourier partial sums of functions from the classes $B^{r_1}_{1,\theta}$ in the space $L_1$.

Keywords: class $B^r_{p,\theta}$ of periodic functions, trigonometric polynomial, hyperbolic cross, Bernoulli kernel, Fourier hyperbolic sum, Valée-Poussin kernel, Fejér kernel

DOI: https://doi.org/10.4213/mzm4508

Full text: PDF file (513 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2010, 87:3, 403–415

Bibliographic databases:

Document Type: Article
UDC: 517.51
Received: 29.01.2008

Citation: A. S. Romanyuk, “Approximation of Classes $B^r_{p,\theta}$ of Periodic Functions of One and Several Variables”, Mat. Zametki, 87:3 (2010), 429–442; Math. Notes, 87:3 (2010), 403–415

Citation in format AMSBIB
\Bibitem{Rom10}
\by A.~S.~Romanyuk
\paper Approximation of Classes $B^r_{p,\theta}$ of Periodic Functions of One and Several Variables
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 3
\pages 429--442
\mathnet{http://mi.mathnet.ru/mz4508}
\crossref{https://doi.org/10.4213/mzm4508}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2761599}
\zmath{https://zbmath.org/?q=an:05791063}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 3
\pages 403--415
\crossref{https://doi.org/10.1134/S0001434610030120}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000279034600012}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954014165}


Linking options:
  • http://mi.mathnet.ru/eng/mz4508
  • https://doi.org/10.4213/mzm4508
  • http://mi.mathnet.ru/eng/mz/v87/i3/p429

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Stasyuk S.A., “Best approximation of periodic functions of several variables from the classes $MB_{p,\theta}^\omega$”, Ukrainian Math. J., 64:1 (2012), 156–161  crossref  zmath  isi  elib  scopus
    2. Myronyuk V.V., “Approximation of the Classes of Periodic Functions of Many Variables by Fourier Sums in the Space l (P) with P=1, a”, Ukr. Math. J., 64:9 (2013), 1370–1381  crossref  mathscinet  zmath  isi  scopus
    3. Romanyuk A.S., “Entropy Numbers and Widths For the Classes of Periodic Functions of Many Variables”, Ukr. Math. J., 68:10 (2017), 1620–1636  crossref  mathscinet  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:640
    Full text:201
    References:132
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019