RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1992, Volume 52, Issue 2, Pages 3–16 (Mi mz4675)  

This article is cited in 8 scientific papers (total in 8 papers)

Solvability “in the large” of a system of equations of the one-dimensional motion of an inhomogeneous viscous heat-conducting gas

A. A. Amosova, A. A. Zlotnikb

a Moscow Power Engineering Institute (Technical University)
b Moscow State Pedagogical University

Full text: PDF file (1355 kB)

English version:
Mathematical Notes, 1992, 52:2, 753–763

Bibliographic databases:

UDC: 517.958, 533.7
Received: 10.03.1992

Citation: A. A. Amosov, A. A. Zlotnik, “Solvability “in the large” of a system of equations of the one-dimensional motion of an inhomogeneous viscous heat-conducting gas”, Mat. Zametki, 52:2 (1992), 3–16; Math. Notes, 52:2 (1992), 753–763

Citation in format AMSBIB
\Bibitem{AmoZlo92}
\by A.~A.~Amosov, A.~A.~Zlotnik
\paper Solvability ``in the large'' of a system of equations of the one-dimensional motion of an inhomogeneous viscous heat-conducting gas
\jour Mat. Zametki
\yr 1992
\vol 52
\issue 2
\pages 3--16
\mathnet{http://mi.mathnet.ru/mz4675}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1187869}
\zmath{https://zbmath.org/?q=an:0779.76079}
\transl
\jour Math. Notes
\yr 1992
\vol 52
\issue 2
\pages 753--763
\crossref{https://doi.org/10.1007/BF01236769}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1992LC62500024}


Linking options:
  • http://mi.mathnet.ru/eng/mz4675
  • http://mi.mathnet.ru/eng/mz/v52/i2/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Zlotnik, A. A. Amosov, “Stability of generalized solutions to equations of one-dimensional motion of viscous heat-conducting gases”, Math. Notes, 63:6 (1998), 736–746  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. A. Zlotnik, S. N. Puzanov, “The well-posedness of the combustion problem for a viscous gas in the case of nonsmooth data, and a semidiscrete method for its solution”, Math. Notes, 65:6 (1999), 793–797  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Zlotnik A., Amosov A., “Weak Solutions to Viscous Heat-Conducting Gas M-Equations with Discontinuous Data: Global Existence, Uniqueness, and Regularity”, Navier-Stokes Equations: Theory and Numerical Methods, Lecture Notes in Pure and Applied Mathematics, 223, ed. Salvi R., Marcel Dekker, 2002, 141–158  isi
    4. A. A. Zlotnik, Sun Jiang, “Well-Definedness of the Cauchy Problem for the One-Dimensional Equations of Viscous Heat Conducting Gas with Initial Data from Lebesgue Spaces”, Math. Notes, 73:5 (2003), 730–735  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. Jiang, S, “Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data”, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 134 (2004), 939  crossref  mathscinet  zmath  isi
    6. Ducomet, B, “Lyapunov functional method for 1D radiative and reactive viscous gas dynamics”, Archive For Rational Mechanics and Analysis, 177:2 (2005), 185  crossref  mathscinet  zmath  adsnasa  isi
    7. Fan, JS, “Stability of weak solutions to the compressible Navier–Stokes equations in bounded annular domains”, Mathematical Methods in the Applied Sciences, 31:2 (2008), 179  crossref  mathscinet  zmath  adsnasa  isi
    8. Fan J., Jiang S., Nakamura G., “Stability of Weak Solutions to Equations of Magnetohydrodynamics with Lebesgue Initial Data”, J. Differ. Equ., 251:8 (2011), 2025–2036  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:219
    Full text:75
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020