RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1992, Volume 52, Issue 3, Pages 146–153 (Mi mz4711)  

This article is cited in 1 scientific paper (total in 1 paper)

Removable singular sets for equations of the form $\sum\dfrac{\partial}{\partial x_i}a_{ij}(x)\dfrac{\partial u}{\partial x_j}=f(x,u,\nabla u)$

M. V. Tuvaev

M. V. Lomonosov Moscow State University

Abstract: The following uniformly elliptic equation is considered:
$$ \sum\frac{\partial}{\partial x_i}a_{ij}(x)\frac{\partial u}{\partial x_j}=f(x,u,\nabla u), \qquad x\in\Omega\subset\mathbf{R}^n, $$
with measurable coefficients. The function $f$ satisfies the condition
$$ f(x,u,\nabla u)u\geqslant C|u|^{\beta_1+1}|\nabla u|^{\beta_2}, \qquad \beta_1>0, \quad 0\leqslant\beta_2\leqslant2, \quad \beta_1+\beta_2>1. $$
It is proved that if $u(x)$ is a generalized (in the sense of integral identity) solution in the domain $\Omega\setminus K$, where the compactum $K$ has Hausdorff dimension $\alpha$, and if $\dfrac{2\beta_1+\beta_2}{\beta_1+\beta_2-1}<n-\alpha$, $u(x)$ will be a generalized solution in the domain $\Omega$. Moreover, the sufficient removability conditions for the singular set are, in some sense, close to the necessary conditions.

Full text: PDF file (1155 kB)

English version:
Mathematical Notes, 1992, 52:3, 983–989

Bibliographic databases:

UDC: 517.9
Received: 30.03.1989

Citation: M. V. Tuvaev, “Removable singular sets for equations of the form $\sum\dfrac{\partial}{\partial x_i}a_{ij}(x)\dfrac{\partial u}{\partial x_j}=f(x,u,\nabla u)$”, Mat. Zametki, 52:3 (1992), 146–153; Math. Notes, 52:3 (1992), 983–989

Citation in format AMSBIB
\Bibitem{Tuv92}
\by M.~V.~Tuvaev
\paper Removable singular sets for equations of the form $\sum\dfrac{\partial}{\partial x_i}a_{ij}(x)\dfrac{\partial u}{\partial x_j}=f(x,u,\nabla u)$
\jour Mat. Zametki
\yr 1992
\vol 52
\issue 3
\pages 146--153
\mathnet{http://mi.mathnet.ru/mz4711}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1194139}
\zmath{https://zbmath.org/?q=an:0789.35032}
\transl
\jour Math. Notes
\yr 1992
\vol 52
\issue 3
\pages 983--989
\crossref{https://doi.org/10.1007/BF01209621}


Linking options:
  • http://mi.mathnet.ru/eng/mz4711
  • http://mi.mathnet.ru/eng/mz/v52/i3/p146

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Pikulin, “Convergence of a family of solutions to a Fujita-type equation in domains with cavities”, Comput. Math. Math. Phys., 56:11 (2016), 1872–1900  mathnet  crossref  crossref  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:133
    Full text:54
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020