  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Forthcoming papers Archive Impact factor Subscription Guidelines for authors License agreement Submit a manuscript Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Mat. Zametki: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Mat. Zametki, 2012, Volume 92, Issue 5, Pages 778–785 (Mi mz4739)  Solution of an Algebraic Equation Using an Irrational Iteration Function

L. S. Chkhartishvili

Georgian Technical University

Abstract: It is proved that, for the choice $z_{n}^{}=-a_{1}$ of the initial approximation, the sequence of approximations $z_{n}^{[i+1]}=\varphi_{n}(z_{n}^{[i]})$, $[i]=0,1,2,…$, of a solution of every canonical algebraic equation with real positive roots which is of the form
$$P_{n}(z)=z^{n}+a_{1}z^{n-1}+a_{2}z^{n-2}+\cdots+a_{n}=0,\qquad n=1,2,…,$$
where the sequence is generated by the irrational iteration function $\varphi_{n}(z)=(z^{n}-P_{n}(z))^{1/n}$, converges to the largest root $z_{n}$. Examples of numerical realization of the method for the problem of determining the energy levels of electron systems in a molecule and in a crystal are presented. The possibility of constructing similar irrational iteration functions in order to solve an algebraic equation of general form is considered.

Keywords: canonical algebraic equation, largest root, irrational iteration, electron system in molecules and crystals, method of divided differences

DOI: https://doi.org/10.4213/mzm4739  Full text: PDF file (423 kB) References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:5, 714–719 Bibliographic databases:     UDC: 519.61+539.2

Citation: L. S. Chkhartishvili, “Solution of an Algebraic Equation Using an Irrational Iteration Function”, Mat. Zametki, 92:5 (2012), 778–785; Math. Notes, 92:5 (2012), 714–719 Citation in format AMSBIB
\Bibitem{Chk12} \by L.~S.~Chkhartishvili \paper Solution of an Algebraic Equation Using an Irrational Iteration Function \jour Mat. Zametki \yr 2012 \vol 92 \issue 5 \pages 778--785 \mathnet{http://mi.mathnet.ru/mz4739} \crossref{https://doi.org/10.4213/mzm4739} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201479} \zmath{https://zbmath.org/?q=an:1269.30040} \elib{http://elibrary.ru/item.asp?id=20731633} \transl \jour Math. Notes \yr 2012 \vol 92 \issue 5 \pages 714--719 \crossref{https://doi.org/10.1134/S0001434612110132} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314263900013} \scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871836350} 

• http://mi.mathnet.ru/eng/mz4739
• https://doi.org/10.4213/mzm4739
• http://mi.mathnet.ru/eng/mz/v92/i5/p778

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles
•  Number of views: This page: 254 Full text: 88 References: 40 First page: 21 Contact us: math-net2020_10 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020