Matematicheskie Zametki
 RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Forthcoming papers Archive Impact factor Subscription Guidelines for authors License agreement Submit a manuscript Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Mat. Zametki: Year: Volume: Issue: Page: Find

 Mat. Zametki, 2012, Volume 92, Issue 5, Pages 778–785 (Mi mz4739)

Solution of an Algebraic Equation Using an Irrational Iteration Function

L. S. Chkhartishvili

Georgian Technical University

Abstract: It is proved that, for the choice $z_{n}^{[0]}=-a_{1}$ of the initial approximation, the sequence of approximations $z_{n}^{[i+1]}=\varphi_{n}(z_{n}^{[i]})$, $[i]=0,1,2,…$, of a solution of every canonical algebraic equation with real positive roots which is of the form
$$P_{n}(z)=z^{n}+a_{1}z^{n-1}+a_{2}z^{n-2}+\cdots+a_{n}=0,\qquad n=1,2,…,$$
where the sequence is generated by the irrational iteration function $\varphi_{n}(z)=(z^{n}-P_{n}(z))^{1/n}$, converges to the largest root $z_{n}$. Examples of numerical realization of the method for the problem of determining the energy levels of electron systems in a molecule and in a crystal are presented. The possibility of constructing similar irrational iteration functions in order to solve an algebraic equation of general form is considered.

Keywords: canonical algebraic equation, largest root, irrational iteration, electron system in molecules and crystals, method of divided differences

DOI: https://doi.org/10.4213/mzm4739

Full text: PDF file (423 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:5, 714–719

Bibliographic databases:

UDC: 519.61+539.2

Citation: L. S. Chkhartishvili, “Solution of an Algebraic Equation Using an Irrational Iteration Function”, Mat. Zametki, 92:5 (2012), 778–785; Math. Notes, 92:5 (2012), 714–719

Citation in format AMSBIB
\Bibitem{Chk12} \by L.~S.~Chkhartishvili \paper Solution of an Algebraic Equation Using an Irrational Iteration Function \jour Mat. Zametki \yr 2012 \vol 92 \issue 5 \pages 778--785 \mathnet{http://mi.mathnet.ru/mz4739} \crossref{https://doi.org/10.4213/mzm4739} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201479} \zmath{https://zbmath.org/?q=an:1269.30040} \elib{https://elibrary.ru/item.asp?id=20731633} \transl \jour Math. Notes \yr 2012 \vol 92 \issue 5 \pages 714--719 \crossref{https://doi.org/10.1134/S0001434612110132} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314263900013} \scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871836350}