RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2004, Volume 75, Issue 4, Pages 507–522 (Mi mz49)  

This article is cited in 28 scientific papers (total in 28 papers)

Universal Models For Real Submanifolds

V. K. Beloshapka

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In previous papers by the present author, a machinery for calculating automorphisms, constructing invariants, and classifying real submanifolds of a complex manifold was developed. The main step in this machinery is the construction of a “nice” model surface. The nice model surface can be treated as an analog of the osculating paraboloid in classical differential geometry. Model surfaces suggested earlier possess a complete list of the desired properties only if some upper estimate for the codimension of the submanifold is satisfied. If this estimate fails, then the surfaces lose the universality property (that is, the ability to touch any germ in an appropriate way), which restricts their applicability. In the present paper, we get rid of this restriction: for an arbitrary type $(n,K)$ (where $n$ is the dimension of the complex tangent plane, and $K$ is the real codimension), we construct a nice model surface. In particular, we solve the problem of constructing a nondegenerate germ of a real analytic submanifold of a complex manifold of arbitrary given type $(n,K)$ with the richest possible group of holomorphic automorphisms in the given class.

DOI: https://doi.org/10.4213/mzm49

Full text: PDF file (258 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2004, 75:4, 475–488

Bibliographic databases:

UDC: 514.742
Received: 03.06.2003
Revised: 15.07.2003

Citation: V. K. Beloshapka, “Universal Models For Real Submanifolds”, Mat. Zametki, 75:4 (2004), 507–522; Math. Notes, 75:4 (2004), 475–488

Citation in format AMSBIB
\Bibitem{Bel04}
\by V.~K.~Beloshapka
\paper Universal Models For Real Submanifolds
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 4
\pages 507--522
\mathnet{http://mi.mathnet.ru/mz49}
\crossref{https://doi.org/10.4213/mzm49}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2068283}
\zmath{https://zbmath.org/?q=an:1063.32010}
\elib{http://elibrary.ru/item.asp?id=13829394}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 4
\pages 475--488
\crossref{https://doi.org/10.1023/B:MATN.0000023331.50692.87}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000221289900023}


Linking options:
  • http://mi.mathnet.ru/eng/mz49
  • https://doi.org/10.4213/mzm49
  • http://mi.mathnet.ru/eng/mz/v75/i4/p507

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. K. Beloshapka, “Symmetries of Real Hypersurfaces in Complex 3-Space”, Math. Notes, 78:2 (2005), 156–163  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. R. V. Gammel', I. G. Kossovskii, “The Envelope of Holomorphy of a Model Third-Degree Surface and the Rigidity Phenomenon”, Proc. Steklov Inst. Math., 253 (2006), 22–36  mathnet  crossref  mathscinet  elib
    3. Beloshapka V. K., “Moduli space of model real submanifolds”, Russ. J. Math. Phys., 13:3 (2006), 245–252  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    4. I. G. Kossovskii, “On envelopes of holomorphy of model manifolds”, Izv. Math., 71:3 (2007), 545–571  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. V. K. Beloshapka, “A Counterexample to the Dimension Conjecture”, Math. Notes, 81:1 (2007), 117–120  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. V. K. Beloshapka, “Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface”, Math. Notes, 82:4 (2007), 461–463  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Beloshapka V., Ezhov V., Schmalz G., “Canonical cartan connection and holomorphic invariants on Engel CR manifolds”, Russ. J. Math. Phys., 14:2 (2007), 121–133  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    8. Beloshapka V. K., “Poincaré's program as an alternative to Klein's (centenary of the publication)”, Russ. J. Math. Phys., 14:4 (2007), 498–500  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    9. Beloshapka V. K., “Representation of the group of holomorphic symmetries of a real germ in the symmetry group of the model surface of the germ”, Russ. J. Math. Phys., 14:2 (2007), 213–215  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    10. Beloshapka V. K., “A CR-manifold in general position as an $e$-structure”, Russ. J. Math. Phys., 14:1 (2007), 1–7  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    11. V. K. Beloshapka, V. V. Ezhov, G. Schmalz, “Holomorphic classification of four-dimensional surfaces in $\mathbb C^3$”, Izv. Math., 72:3 (2008), 413–427  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. Valerii K. Beloshapka, “Programma A. Puankare kak alternativa programme F. Kleina (k 100-letiyu publikatsii programmy)”, Zhurn. SFU. Ser. Matem. i fiz., 1:1 (2008), 63–67  mathnet
    13. Katarzyna S.-S., Wierzba W., Radowicki S., “Wpływ stosowania tibolonu na obraz endometrium u kobiet po menopauzie [The influence of a tibolone therapy on endometrium in post-menopausal women]”, Ginekol. Pol., 79:11 (2008), 758–761  isi
    14. Beloshapka V. K., “Space of orbits of the automorphism group of a model surface of type $(1,2)$”, Russ. J. Math. Phys., 15:1 (2008), 140–143  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. Mamai I. B., “Model CR-manifolds with one-dimensional complex tangent”, Russ. J. Math. Phys., 16:1 (2009), 97–102  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    16. Beloshapka V.K., Kossovskiy I.G., “Homogeneous Hypersurfaces in C-3, Associated with a Model CR-Cubic”, J Geom Anal, 20:3 (2010), 538–564  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    17. Beloshapka V.K., Kossovskiy I.G., “Classification of homogeneous CR-manifolds in dimension 4”, J Math Anal Appl, 374:2 (2011), 655–672  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    18. V. K. Beloshapka, “Model-surface method: An infinite-dimensional version”, Proc. Steklov Inst. Math., 279 (2012), 14–24  mathnet  crossref  mathscinet  isi
    19. Merker J., Sabzevari M., “Explicit Expression of Cartan's Connection for Levi-Nondegenerate 3-Manifolds in Complex Surfaces, and Identification of the Heisenberg Sphere”, Cent. Eur. J. Math., 10:5 (2012), 1801–1835  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    20. I. B. Mamai, “Moduli spaces of model surfaces with one-dimensional complex tangent”, Izv. Math., 77:2 (2013), 354–377  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    21. J. Merker, M. Sabzevari, “The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$”, Izv. Math., 78:6 (2014), 1158–1194  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    22. Sabzevari M., Hashemi A., M-Alizadeh B., Merker J., “Applications of Differential Algebra For Computing Lie Algebras of Infinitesimal Cr-Automorphisms”, Sci. China-Math., 57:9 (2014), 1811–1834  crossref  mathscinet  zmath  isi  scopus  scopus
    23. Masoud S., “Moduli Spaces of Model Real Submanifolds: Two Alternative Approaches”, Sci. China-Math., 58:11 (2015), 2261–2278  crossref  mathscinet  zmath  isi  scopus  scopus
    24. Merker J., Sabzevari M., “Cartan Equivalence Problem for 5-Dimensional Bracket-Generating CR Manifolds in
      $$\mathbb {C}^4$$
      C 4”, J. Geom. Anal., 26:4 (2016), 3194–3251  crossref  mathscinet  zmath  isi  elib  scopus
    25. Sabzevari M., Hashemi A., Alizadeh B.M., Merker J., “Lie algebras of infinitesimal CR automorphisms of weighted homogeneous and homogeneous CR-generic submanifolds of CN”, Filomat, 30:6 (2016), 1387–1411  crossref  mathscinet  zmath  isi  elib  scopus
    26. Kolar M., Kossovskiy I., Zaitsev D., “Normal Forms in Cauchy-Riemann Geometry”, Analysis and Geometry in Several Complex Variables, Contemporary Mathematics, 681, eds. Berhanu S., Mir N., Straube E., Amer Mathematical Soc, 2017, 153–177  crossref  mathscinet  zmath  isi  scopus  scopus
    27. Beloshapka V.K., “Cubic Model Cr-Manifolds Without the Assumption of Complete Nondegeneracy”, Russ. J. Math. Phys., 25:2 (2018), 148–157  crossref  mathscinet  isi  scopus  scopus
    28. M. A. Stepanova, “A modification of the Bloom–Graham Theorem: the introduction of weights in the complex tangent space”, Trans. Moscow Math. Soc., 2018, 201–208  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:564
    Full text:105
    References:34
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019