RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1986, Volume 39, Issue 2, Pages 268–276 (Mi mz4943)  

This article is cited in 1 scientific paper (total in 1 paper)

Existence of superposition bases in countable primitively recursively closed classes

S. S. Marchenkov


Full text: PDF file (709 kB)

English version:
Mathematical Notes, 1986, 39:2, 146–150

Bibliographic databases:

UDC: 519.4
Received: 05.03.1985

Citation: S. S. Marchenkov, “Existence of superposition bases in countable primitively recursively closed classes”, Mat. Zametki, 39:2 (1986), 268–276; Math. Notes, 39:2 (1986), 146–150

Citation in format AMSBIB
\Bibitem{Mar86}
\by S.~S.~Marchenkov
\paper Existence of superposition bases in countable primitively recursively closed classes
\jour Mat. Zametki
\yr 1986
\vol 39
\issue 2
\pages 268--276
\mathnet{http://mi.mathnet.ru/mz4943}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=834985}
\zmath{https://zbmath.org/?q=an:0637.03037}
\transl
\jour Math. Notes
\yr 1986
\vol 39
\issue 2
\pages 146--150
\crossref{https://doi.org/10.1007/BF01159899}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1986E201900026}


Linking options:
  • http://mi.mathnet.ru/eng/mz4943
  • http://mi.mathnet.ru/eng/mz/v39/i2/p268

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Solovyev V., “Algebras of Recursive Functions”, Recursion Theory and Complexity, Degruyter Series in Logic and its Applications, 2, ed. Arslanov M. Lempp S., Walter de Gruyter & Co, 1999, 193–214  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:162
    Full text:66
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020