RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2001, Volume 69, Issue 3, Pages 383–401 (Mi mz512)  

The Ingham Divisor Problem on the Set of Numbers without $k$h Powers

T. K. Ikonnikova

Moscow State Pedagogical University

Abstract: Suppose that $k$ and $l$ are integers such that $k\ge2$ and $l\ge2$ , $M_k$ is a set of numbers without $k$th powers, and $\tau(n)=\sum_{d\mid n}1$. In this paper, we obtain asymptotic estimates of the sums $\sum\tau(n)\tau(n+1)$ over $n\le x$, $n\in M_k$.

DOI: https://doi.org/10.4213/mzm512

Full text: PDF file (235 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2001, 69:3, 347–363

Bibliographic databases:

UDC: 512.542
Received: 21.06.2000

Citation: T. K. Ikonnikova, “The Ingham Divisor Problem on the Set of Numbers without $k$h Powers”, Mat. Zametki, 69:3 (2001), 383–401; Math. Notes, 69:3 (2001), 347–363

Citation in format AMSBIB
\Bibitem{Iko01}
\by T.~K.~Ikonnikova
\paper The Ingham Divisor Problem on the Set of Numbers without $k$h Powers
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 3
\pages 383--401
\mathnet{http://mi.mathnet.ru/mz512}
\crossref{https://doi.org/10.4213/mzm512}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1846837}
\zmath{https://zbmath.org/?q=an:0996.11059}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 3
\pages 347--363
\crossref{https://doi.org/10.1023/A:1010283408577}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000169324200008}


Linking options:
  • http://mi.mathnet.ru/eng/mz512
  • https://doi.org/10.4213/mzm512
  • http://mi.mathnet.ru/eng/mz/v69/i3/p383

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:239
    Full text:119
    References:59
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020