|
This article is cited in 7 scientific papers (total in 7 papers)
Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems
V. S. Guba
Full text:
PDF file (370 kB)
English version:
Mathematical Notes, 1986, 40:3, 688–690
Bibliographic databases:
UDC:
519.4 Received: 09.04.1985
Citation:
V. S. Guba, “Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems”, Mat. Zametki, 40:3 (1986), 321–324; Math. Notes, 40:3 (1986), 688–690
Citation in format AMSBIB
\Bibitem{Gub86}
\by V.~S.~Guba
\paper Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems
\jour Mat. Zametki
\yr 1986
\vol 40
\issue 3
\pages 321--324
\mathnet{http://mi.mathnet.ru/mz5162}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=869922}
\zmath{https://zbmath.org/?q=an:0621.20009|0611.20020}
\transl
\jour Math. Notes
\yr 1986
\vol 40
\issue 3
\pages 688--690
\crossref{https://doi.org/10.1007/BF01142470}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1986J376200003}
Linking options:
http://mi.mathnet.ru/eng/mz5162 http://mi.mathnet.ru/eng/mz/v40/i3/p321
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Proc. Steklov Inst. Math., 242 (2003), 165–196
-
B. I. Plotkin, “Problems in algebra inspired by universal algebraic geometry”, J. Math. Sci., 139:4 (2006), 6780–6791
-
J. Math. Sci. (N. Y.), 140:5 (2007), 716–728
-
Proc. Steklov Inst. Math., 274 (2011), 116–123
-
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. II. Foundations”, J. Math. Sci., 185:3 (2012), 389–416
-
Guyot L. Stalder Y., “Limits of Baumslag-Solitar Groups and Dimension Estimates in the Space of Marked Groups”, Group. Geom. Dyn., 6:3 (2012), 533–577
-
M. V. Kotov, “Topologizability of countable equationally Noetherian algebras”, Algebra and Logic, 52:2 (2013), 105–115
|
Number of views: |
This page: | 296 | Full text: | 144 | First page: | 2 |
|