RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. заметки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Матем. заметки, 2010, том 87, выпуск 1, страницы 26–34 (Mi mz5180)  

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

Точные оценки норм дробных производных функций многих переменных, удовлетворяющих условиям Гёльдера

В. Ф. Бабенкоa, С. А. Пичуговb

a Днепропетровский национальный университет
b Днепропетровский национальный технический университет железнодорожного транспорта

Аннотация: Доказано новое точное неравенство типа Колмогорова, которое оценивает равномерную норму смешанной производной дробного порядка (в смысле Маршо) функции многих переменных через равномерную норму функции и ее нормы в пространствах Гёльдера.
Библиография: 18 названий.

DOI: https://doi.org/10.4213/mzm5180

Полный текст: PDF файл (464 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Mathematical Notes, 2010, 87:1, 23–30

Реферативные базы данных:

УДК: 517.5
Поступило: 05.06.2008
Исправленный вариант: 26.05.2009

Образец цитирования: В. Ф. Бабенко, С. А. Пичугов, “Точные оценки норм дробных производных функций многих переменных, удовлетворяющих условиям Гёльдера”, Матем. заметки, 87:1 (2010), 26–34; Math. Notes, 87:1 (2010), 23–30

Цитирование в формате AMSBIB
\RBibitem{BabPic10}
\by В.~Ф.~Бабенко, С.~А.~Пичугов
\paper Точные оценки норм дробных производных функций многих переменных, удовлетворяющих условиям Гёльдера
\jour Матем. заметки
\yr 2010
\vol 87
\issue 1
\pages 26--34
\mathnet{http://mi.mathnet.ru/mz5180}
\crossref{https://doi.org/10.4213/mzm5180}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2730380}
\zmath{https://zbmath.org/?q=an:05791016}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 1
\pages 23--30
\crossref{https://doi.org/10.1134/S0001434610010049}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000276064800004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950015718}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/mz5180
  • https://doi.org/10.4213/mzm5180
  • http://mi.mathnet.ru/rus/mz/v87/i1/p26

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Babenko V.F., Parfinovych N.V., Pichugov S.A., “Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions”, Ukrainian Math. J., 62:3 (2010), 343–357  crossref  mathscinet  zmath  isi  scopus
    2. В. Ф. Бабенко, Н. В. Парфинович, “Неравенства типа Колмогорова для норм производных Рисса функций многих переменных и некоторые их приложения”, Тр. ИММ УрО РАН, 17, № 3, 2011, 60–70  mathnet  elib; V. F. Babenko, N. V. Parfinovich, “Kolmogorov-type inequalities for the norms of Riesz derivatives of multivariable functions and some applications”, Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 9–20  crossref  isi
    3. В. Ф. Бабенко, Н. В. Парфинович, С. А. Пичугов, “Неравенства типа Колмогорова для норм производных Рисса функций многих переменных с ограниченным в $L_\infty$ лапласианом и смежные задачи”, Матем. заметки, 95:1 (2014), 3–17  mathnet  crossref  mathscinet  elib; V. F. Babenko, N. V. Parfinovich, S. A. Pichugov, “Kolmogorov-Type Inequalities for Norms of Riesz Derivatives of Functions of Several Variables with Laplacian Bounded in $L_\infty$ and Related Problems”, Math. Notes, 95:1 (2014), 3–14  crossref  isi
    4. V. F. Babenko, M. S. Churilova, N. V. Parfinovych, D. S. Skorokhodov, “Kolmogorov type inequalities for the Marchaud fractional derivatives on the real line and the half-line”, J. Inequal. Appl., 2014, 504  crossref  mathscinet  zmath  isi  scopus
    5. Babenko V.F. Parfinovich N.V., “Estimation of the Uniform Norm of One-Dimensional Riesz Potential of the Partial Derivative of a Function with Bounded Laplacian”, Ukr. Math. J., 68:7 (2016), 987–999  crossref  mathscinet  isi  scopus
  • Математические заметки Mathematical Notes
    Просмотров:
    Эта страница:479
    Полный текст:130
    Литература:34
    Первая стр.:28
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020