RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2008, Volume 84, Issue 1, Pages 144–148 (Mi mz5198)  

This article is cited in 2 scientific papers (total in 2 papers)

Brief Communications

Convexity Condition in Cucker–Smale Theorems in the Theory of Teaching

Yu. V. Malykhin

Steklov Mathematical Institute, Russian Academy of Sciences

Keywords: convexity, probability measure, random variable, estimator, approximation, nearest element, least-squares method, Hilbert space, central limit theorem

DOI: https://doi.org/10.4213/mzm5198

Full text: PDF file (294 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2008, 84:1, 142–146

Bibliographic databases:

Received: 10.11.2007

Citation: Yu. V. Malykhin, “Convexity Condition in Cucker–Smale Theorems in the Theory of Teaching”, Mat. Zametki, 84:1 (2008), 144–148; Math. Notes, 84:1 (2008), 142–146

Citation in format AMSBIB
\Bibitem{Mal08}
\by Yu.~V.~Malykhin
\paper Convexity Condition in Cucker--Smale Theorems in the Theory of Teaching
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 1
\pages 144--148
\mathnet{http://mi.mathnet.ru/mz5198}
\crossref{https://doi.org/10.4213/mzm5198}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2451894}
\elib{http://elibrary.ru/item.asp?id=13575865}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 1
\pages 142--146
\crossref{https://doi.org/10.1134/S0001434608070158}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000258855600015}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50849092835}


Linking options:
  • http://mi.mathnet.ru/eng/mz5198
  • https://doi.org/10.4213/mzm5198
  • http://mi.mathnet.ru/eng/mz/v84/i1/p144

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730  mathnet  crossref  mathscinet
    2. A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:347
    Full text:88
    References:15
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019