RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2001, Volume 69, Issue 4, Pages 515–523 (Mi mz520)  

This article is cited in 2 scientific papers (total in 2 papers)

Distinguishing Between Symmetric Spaces and $L^\infty$ by a Differential Basis

E. I. Berezhnoi, A. A. Perfil'ev

P. G. Demidov Yaroslavl State University

Abstract: One of the fundamental problems in the theory of differentiation of integrals is the following. Let $X$ and $Y$ be two spaces which are different in some sense. Does there exist a differential basis that differentiates the space $X$, i.e., all integrals of functions from $X$, but not integrals of functions from $Y$, i.e., there exists a function from $Y$ whose integral cannot be differentiated by this basis. In this paper we construct a basis which differentiates the space $L^\infty$ but does not differentiate any other symmetric space $X\ne L^\infty$.

DOI: https://doi.org/10.4213/mzm520

Full text: PDF file (201 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2001, 69:4, 467–474

Bibliographic databases:

UDC: 517.5
Received: 28.02.1999

Citation: E. I. Berezhnoi, A. A. Perfil'ev, “Distinguishing Between Symmetric Spaces and $L^\infty$ by a Differential Basis”, Mat. Zametki, 69:4 (2001), 515–523; Math. Notes, 69:4 (2001), 467–474

Citation in format AMSBIB
\Bibitem{BerPer01}
\by E.~I.~Berezhnoi, A.~A.~Perfil'ev
\paper Distinguishing Between Symmetric Spaces and $L^\infty$ by a Differential Basis
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 4
\pages 515--523
\mathnet{http://mi.mathnet.ru/mz520}
\crossref{https://doi.org/10.4213/mzm520}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1845993}
\zmath{https://zbmath.org/?q=an:1064.46020}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 4
\pages 467--474
\crossref{https://doi.org/10.1023/A:1010204113120}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000169324200018}


Linking options:
  • http://mi.mathnet.ru/eng/mz520
  • https://doi.org/10.4213/mzm520
  • http://mi.mathnet.ru/eng/mz/v69/i4/p515

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. I. Berezhnoi, A. V. Novikov, “The halo problem in the theory of differentiation of integrals”, Izv. Math., 66:4 (2002), 659–681  mathnet  crossref  crossref  mathscinet  zmath
    2. E. I. Berezhnoǐ, “On compactness of maximal operators”, Siberian Math. J., 56:4 (2015), 593–600  mathnet  crossref  crossref  isi  elib  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:192
    Full text:38
    References:16
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019