RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1986, Volume 40, Issue 5, Pages 683–696 (Mi mz5226)  

This article is cited in 2 scientific papers (total in 2 papers)

Functional limit theorems for $U$-statistics

A. F. Ronzhin


Full text: PDF file (1030 kB)

English version:
Mathematical Notes, 1986, 40:5, 886–893

Bibliographic databases:

UDC: 519.2
Received: 10.06.1985

Citation: A. F. Ronzhin, “Functional limit theorems for $U$-statistics”, Mat. Zametki, 40:5 (1986), 683–696; Math. Notes, 40:5 (1986), 886–893

Citation in format AMSBIB
\Bibitem{Ron86}
\by A.~F.~Ronzhin
\paper Functional limit theorems for $U$-statistics
\jour Mat. Zametki
\yr 1986
\vol 40
\issue 5
\pages 683--696
\mathnet{http://mi.mathnet.ru/mz5226}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=886191}
\zmath{https://zbmath.org/?q=an:0659.60058|0616.62022}
\transl
\jour Math. Notes
\yr 1986
\vol 40
\issue 5
\pages 886--893
\crossref{https://doi.org/10.1007/BF01159712}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1986J487800015}


Linking options:
  • http://mi.mathnet.ru/eng/mz5226
  • http://mi.mathnet.ru/eng/mz/v40/i5/p683

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. S. Borisov, V. A. Zhechev, “The functional limit theorem for the canonical $U$-processes defined on dependent trials”, Siberian Math. J., 52:4 (2011), 593–601  mathnet  crossref  mathscinet  isi
    2. I. S. Borisov, V. A. Zhechev, “Invariance principle for canonical $U$- and $V$-statistics based on dependent observations”, Siberian Adv. Math., 25:1 (2015), 21–32  mathnet  crossref  mathscinet
  • Математические заметки Mathematical Notes
    Number of views:
    This page:161
    Full text:70
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020