RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2009, Volume 86, Issue 2, Pages 290–303 (Mi mz5262)  

This article is cited in 7 scientific papers (total in 7 papers)

On the Existence of Nonlinear Padé–Chebyshev Approximations for Analytic Functions

S. P. Suetin

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We present examples of two functions that are analytic on the interval $[-1,1]$ and satisfy the condition that, for any $n=2,3,…$, the first of them does not have nonlinear Padé–Chebyshev approximations of type $(n,2)$ and the second function does not have nonlinear Padé–Chebyshev approximations of type $(n,n)$ (i.e., does not have diagonal approximations). Because of the existence criterion for nonlinear Padé–Faber approximations, which is obtained in the present paper, both of these examples follow from the respective well-known V. I. Buslaev counterexamples to the Baker–Graves-Morris conjecture and to the Baker–Gammel–Wills conjecture about the Padé approximations of a power series. In particular, the first of these functions is a rational function of type $(2,3)$, and the second function is also defined by an explicit analytic expression.

Keywords: analytic function, rational function, algebraic function, Padé–Chebyshev approximation, Padé–Faber approximation, Laurent series, Faber series

DOI: https://doi.org/10.4213/mzm5262

Full text: PDF file (628 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2009, 86:2, 264–275

Bibliographic databases:

UDC: 517.538
Received: 16.07.2008
Revised: 31.10.2008

Citation: S. P. Suetin, “On the Existence of Nonlinear Padé–Chebyshev Approximations for Analytic Functions”, Mat. Zametki, 86:2 (2009), 290–303; Math. Notes, 86:2 (2009), 264–275

Citation in format AMSBIB
\Bibitem{Sue09}
\by S.~P.~Suetin
\paper On the Existence of Nonlinear Pad\'e--Chebyshev Approximations for Analytic Functions
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 2
\pages 290--303
\mathnet{http://mi.mathnet.ru/mz5262}
\crossref{https://doi.org/10.4213/mzm5262}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2584562}
\zmath{https://zbmath.org/?q=an:1177.42023}
\elib{http://elibrary.ru/item.asp?id=15305101}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 2
\pages 264--275
\crossref{https://doi.org/10.1134/S0001434609070281}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000269660400028}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249114682}


Linking options:
  • http://mi.mathnet.ru/eng/mz5262
  • https://doi.org/10.4213/mzm5262
  • http://mi.mathnet.ru/eng/mz/v86/i2/p290

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. A. Knizhnerman, “Padé–Faber Approximation of Markov Functions on Real-Symmetric Compact Sets”, Math. Notes, 86:1 (2009), 81–92  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Padé–Chebyshev approximants of multivalued analytic functions, variation of equilibrium energy, and the $S$-property of stationary compact sets”, Russian Math. Surveys, 66:6 (2011), 1015–1048  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Bosuwan N., “On Montessus de Ballore'S Theorem For Nonlinear Pade-Orthogonal Approximants”, Jaen J. Approx., 8:2 (2016), 151–173  mathscinet  zmath  isi
    5. A. P. Starovoitov, E. P. Kechko, “On Some Properties of Hermite–Padé Approximants to an Exponential System”, Proc. Steklov Inst. Math., 298 (2017), 317–333  mathnet  crossref  crossref  isi  elib
    6. Bosuwan N., “On Montessus de Ballore'S Theorem For Simultaneous Pade-Faber Approximants”, Demonstr. Math., 51:1 (2018), 45–61  crossref  mathscinet  zmath  isi  scopus
    7. N. Bosuwan, “Convergence of Row Sequences of Simultaneous Padé–Faber Approximants”, Math. Notes, 103:5 (2018), 683–693  mathnet  crossref  crossref  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:553
    Full text:93
    References:43
    First page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019