RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2004, Volume 75, Issue 2, Pages 307–310 (Mi mz546)  

This article is cited in 10 scientific papers (total in 10 papers)

Brief Communications

Weak Solutions to the Equations of Motion of Viscous Compressible Reacting Binary Mixtures: Uniqueness and Lipschitz-Continuous Dependence on Data

A. A. Zlotnik

Moscow Power Engineering Institute (Technical University)

DOI: https://doi.org/10.4213/mzm546

Full text: PDF file (227 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2004, 75:2, 278–283

Bibliographic databases:

UDC: 517.958
Received: 10.04.2003

Citation: A. A. Zlotnik, “Weak Solutions to the Equations of Motion of Viscous Compressible Reacting Binary Mixtures: Uniqueness and Lipschitz-Continuous Dependence on Data”, Mat. Zametki, 75:2 (2004), 307–310; Math. Notes, 75:2 (2004), 278–283

Citation in format AMSBIB
\Bibitem{Zlo04}
\by A.~A.~Zlotnik
\paper Weak Solutions to the Equations of Motion of Viscous Compressible Reacting Binary Mixtures: Uniqueness and Lipschitz-Continuous Dependence on Data
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 2
\pages 307--310
\mathnet{http://mi.mathnet.ru/mz546}
\crossref{https://doi.org/10.4213/mzm546}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2054563}
\zmath{https://zbmath.org/?q=an:1122.35118}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 2
\pages 278--283
\crossref{https://doi.org/10.1023/B:MATN.0000015045.35518.a4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000220006100030}


Linking options:
  • http://mi.mathnet.ru/eng/mz546
  • https://doi.org/10.4213/mzm546
  • http://mi.mathnet.ru/eng/mz/v75/i2/p307

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Zlotnik A. A., Ducomet B., “Stabilization of one-dimensional flows of radiative and reactive viscous gas for a general rate of reaction”, Dokl. Math., 72:1 (2005), 595–600  mathscinet  zmath  isi  elib
    2. Ducomet B., Zlotnik A., “On the large-time behavior of 1D radiative and reactive viscous flows for higher-order kinetics”, Nonlinear Anal., 63:8 (2005), 1011–1033  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    3. Pekař M., “Thermodynamics and foundations of mass-action kinetics”, Prog. React. Kinet. Mech., 30:1-2 (2006), 3–113  crossref  isi
    4. Donatelli D., Trivisa K., “On the motion of a viscous compressible radiative-reacting gas”, Comm. Math. Phys., 265:2 (2006), 463–491  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    5. Michoski C., Vasseur A., “Existence and uniqueness of strong solutions for a compressible multiphase Navier–Stokes miscible fluid-flow problem in dimension $n=1$”, Math. Models Methods Appl. Sci., 19:3 (2009), 443–476  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. Zatorska E., “On the Steady Flow of a Multicomponent, Compressible, Chemically Reacting Gas”, Nonlinearity, 24:11 (2011), 3267–3278  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. Zhang W., Zhang J., “Global Existence of Solutions for the 1-D Radiative and Reactive Viscous Gas Dynamics”, Appl. Mat., 57:2 (2012), 109–128  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    8. A. V. Chernov, “A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces”, Math. Notes, 94:5 (2013), 703–714  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. Zatorska E., “Mixtures: Sequential Stability of Variational Entropy Solutions”, J. Math. Fluid Mech., 17:3 (2015), 437–461  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Yuan H.-j., Xie J.-n., “Unique solvability for a class of non-Newtonian fluids for a reacting mixture with vacuum”, Acta Math. Appl. Sin.-Engl. Ser., 32:4 (2016), 833–850  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:261
    Full text:106
    References:51
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020