RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1984, Volume 35, Issue 3, Pages 321–328 (Mi mz5646)  

This article is cited in 1 scientific paper (total in 1 paper)

Structure of the center of a Clifford algebra over an integral domain

P. V. Semenov

Moscow State Pedagogical Institute

Full text: PDF file (519 kB)

English version:
Mathematical Notes, 1984, 35:3, 167–171

Bibliographic databases:

UDC: 519.4
Received: 24.03.1983

Citation: P. V. Semenov, “Structure of the center of a Clifford algebra over an integral domain”, Mat. Zametki, 35:3 (1984), 321–328; Math. Notes, 35:3 (1984), 167–171

Citation in format AMSBIB
\Bibitem{Sem84}
\by P.~V.~Semenov
\paper Structure of the center of a Clifford algebra over an integral domain
\jour Mat. Zametki
\yr 1984
\vol 35
\issue 3
\pages 321--328
\mathnet{http://mi.mathnet.ru/mz5646}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=741798}
\zmath{https://zbmath.org/?q=an:0552.15012}
\transl
\jour Math. Notes
\yr 1984
\vol 35
\issue 3
\pages 167--171
\crossref{https://doi.org/10.1007/BF01139910}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1984TY55400001}


Linking options:
  • http://mi.mathnet.ru/eng/mz5646
  • http://mi.mathnet.ru/eng/mz/v35/i3/p321

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. M. Koganov, “A universal bijection between Gessel–Stanley permutations and connection diagrams of corresponding ranks”, Russian Math. Surveys, 51:2 (1996), 333–335  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:164
    Full text:76
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020