RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1984, Volume 36, Issue 6, Pages 883–892 (Mi mz6129)  

This article is cited in 1 scientific paper (total in 1 paper)

Faber-Erokhin basic functions in the neighborhood of several continua

Yu. A. Farkov


Full text: PDF file (877 kB)

English version:
Mathematical Notes, 1984, 36:6, 941–946

Bibliographic databases:

UDC: 517.537
Received: 30.10.1981

Citation: Yu. A. Farkov, “Faber-Erokhin basic functions in the neighborhood of several continua”, Mat. Zametki, 36:6 (1984), 883–892; Math. Notes, 36:6 (1984), 941–946

Citation in format AMSBIB
\Bibitem{Far84}
\by Yu.~A.~Farkov
\paper Faber-Erokhin basic functions in the neighborhood of several continua
\jour Mat. Zametki
\yr 1984
\vol 36
\issue 6
\pages 883--892
\mathnet{http://mi.mathnet.ru/mz6129}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=776341}
\zmath{https://zbmath.org/?q=an:0578.30002}
\transl
\jour Math. Notes
\yr 1984
\vol 36
\issue 6
\pages 941--946
\crossref{https://doi.org/10.1007/BF01161589}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1984AND3200026}


Linking options:
  • http://mi.mathnet.ru/eng/mz6129
  • http://mi.mathnet.ru/eng/mz/v36/i6/p883

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. A. Farkov, “On the best linear approximation of holomorphic functions”, J. Math. Sci., 218:5 (2016), 678–698  mathnet  crossref  mathscinet  zmath
  • Математические заметки Mathematical Notes
    Number of views:
    This page:152
    Full text:65
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020