RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1981, Volume 29, Issue 4, Pages 603–622 (Mi mz6280)  

This article is cited in 13 scientific papers (total in 13 papers)

A problem of extremal interpolation

V. T. Shevaldin


Full text: PDF file (1080 kB)

English version:
Mathematical Notes, 1981, 29:4, 310–320

Bibliographic databases:

UDC: 517.9
Received: 02.10.1979

Citation: V. T. Shevaldin, “A problem of extremal interpolation”, Mat. Zametki, 29:4 (1981), 603–622; Math. Notes, 29:4 (1981), 310–320

Citation in format AMSBIB
\Bibitem{She81}
\by V.~T.~Shevaldin
\paper A problem of extremal interpolation
\jour Mat. Zametki
\yr 1981
\vol 29
\issue 4
\pages 603--622
\mathnet{http://mi.mathnet.ru/mz6280}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=615508}
\zmath{https://zbmath.org/?q=an:0482.41003}
\transl
\jour Math. Notes
\yr 1981
\vol 29
\issue 4
\pages 310--320
\crossref{https://doi.org/10.1007/BF01343541}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1981MP10100025}


Linking options:
  • http://mi.mathnet.ru/eng/mz6280
  • http://mi.mathnet.ru/eng/mz/v29/i4/p603

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. N. Subbotin, “Extremal functional interpolation in the mean with least value of the $n$-th derivative for large averaging intervals”, Math. Notes, 59:1 (1996), 83–96  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Yu. N. Subbotin, “Extremal $L_p$ interpolation in the mean with intersecting averaging intervals”, Izv. Math., 61:1 (1997), 183–205  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Yu. N. Subbotin, N. I. Chernykh, “Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics”, Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S64–S103  mathnet  mathscinet  zmath  elib
    4. S. I. Novikov, “Interpolyatsiya v share s minimalnym znacheniem $L_p$-normy operatora Laplasa”, Tr. IMM UrO RAN, 17, no. 3, 2011, 258–265  mathnet  elib
    5. S. I. Novikov, “Interpolyatsiya na kvadrate s minimalnym znacheniem ravnomernoi normy operatora Laplasa”, Tr. IMM UrO RAN, 18, no. 4, 2012, 249–257  mathnet  elib
    6. S. I. Novikov, “Ob odnoi zadache interpolyatsii s minimalnym znacheniem operatora Laplasa”, Tr. IMM UrO RAN, 19, no. 3, 2013, 230–243  mathnet  mathscinet  elib
    7. S. I. Novikov, “On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 238–244  mathnet  crossref  mathscinet  isi  elib
    8. E. V. Strelkova, V. T. Shevaldin, “On uniform Lebesgue constants of local exponential splines with equidistant knots”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 206–217  mathnet  crossref  mathscinet  isi  elib
    9. E. V. Strelkova, V. T. Shevaldin, “O ravnomernykh konstantakh Lebega lokalnykh trigonometricheskikh splainov tretego poryadka”, Tr. IMM UrO RAN, 22, no. 2, 2016, 245–254  mathnet  crossref  mathscinet  elib
    10. S. I. Novikov, “Lebesgue constants for some interpolational ${\mathcal L}$-splines”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 136–144  mathnet  crossref  crossref  mathscinet  isi  elib
    11. V. T. Shevaldin, “A method for the construction of analogs of wavelets by means of trigonometric $B$-splines”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 165–171  mathnet  crossref  crossref  mathscinet  isi  elib
    12. Sergey I. Novikov, “On interpolation by almost trigonometric splines”, Ural Math. J., 3:2 (2017), 67–73  mathnet  crossref  mathscinet
    13. Yu. N. Subbotin, S. I. Novikov, V. T. Shevaldin, “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. IMM UrO RAN, 24, no. 3, 2018, 200–225  mathnet  crossref  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:164
    Full text:72
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020