RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2011, Volume 90, Issue 1, Pages 143–150 (Mi mz6321)  

This article is cited in 6 scientific papers (total in 6 papers)

On Degeneration of the Surface in the Fitting Compactification of Moduli of Stable Vector Bundles

N. V. Timofeeva

P. G. Demidov Yaroslavl State University

Abstract: A new compactification of the moduli scheme of Gieseker-stable vector bundles with given Hilbert polynomial on a smooth projective polarized surface $(S,\mathsf{H})$ over a field $k=\overline k$ of zero characteristic was constructed in previous papers by the author. Families of locally free sheaves on the surface $S$ are completed by the locally free sheaves on the schemes which are certain modifications of $S$. We describe the class of modified surfaces that appear in the construction.

Keywords: moduli space, semistable coherent sheaf, locally free sheaf, blowup algebra, projective algebraic surface, ample divisor

DOI: https://doi.org/10.4213/mzm6321

Full text: PDF file (500 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2011, 90:1, 142–148

Bibliographic databases:

UDC: 512.722+512.723
Received: 21.04.2009

Citation: N. V. Timofeeva, “On Degeneration of the Surface in the Fitting Compactification of Moduli of Stable Vector Bundles”, Mat. Zametki, 90:1 (2011), 143–150; Math. Notes, 90:1 (2011), 142–148

Citation in format AMSBIB
\Bibitem{Tim11}
\by N.~V.~Timofeeva
\paper On Degeneration of the Surface in the Fitting Compactification of Moduli of Stable Vector Bundles
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 1
\pages 143--150
\mathnet{http://mi.mathnet.ru/mz6321}
\crossref{https://doi.org/10.4213/mzm6321}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2908175}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 1
\pages 142--148
\crossref{https://doi.org/10.1134/S0001434611070145}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000294363500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052075367}


Linking options:
  • http://mi.mathnet.ru/eng/mz6321
  • https://doi.org/10.4213/mzm6321
  • http://mi.mathnet.ru/eng/mz/v90/i1/p143

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. V. Timofeeva, “Ob odnom izomorfizme kompaktifikatsii skhemy modulei vektornykh rassloenii”, Model. i analiz inform. sistem, 19:1 (2012), 37–50  mathnet
    2. N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli”, Sb. Math., 204:1 (2013), 133–153  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family”, Sb. Math., 204:3 (2013), 411–437  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. N. V. Timofeeva, “On a morphism of compactifications of moduli scheme of vector bundles”, Sib. elektron. matem. izv., 12 (2015), 577–591  mathnet  crossref
    5. N. V. Timofeeva, “Izomorfizm kompaktifikatsii modulei vektornykh rassloenii: neprivedennye skhemy modulei”, Model. i analiz inform. sistem, 22:5 (2015), 629–647  mathnet  crossref  mathscinet  elib
    6. N. V. Timofeeva, “Admissible pairs vs Gieseker-Maruyama”, Sb. Math., 210:5 (2019), 731–755  mathnet  crossref  crossref  adsnasa  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:280
    Full text:103
    References:33
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020