RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2008, Volume 84, Issue 5, Pages 713–723 (Mi mz6357)  

Comonotone Approximation of Periodic Functions

G. A. Dzyubenkoa, M. G. Pleshakovb

a International Mathematical Centre
b Saratov State University named after N. G. Chernyshevsky

Abstract: Suppose that a continuous $2\pi$-periodic function $f$ on the real axis $\mathbb R$  changes its monotonicity at different ordered fixed points $y_i\in[-\pi,\pi)$, $i=1,…,2s$, $s\in\mathbb N$. In other words, there is a set $Y:=\{y_i\}_{i\in\mathbb Z}$ of points $y_i=y_{i+2s}+2\pi$ on $\mathbb R$ such that $f$ is nondecreasing on $[y_i,y_{i-1}]$ if $i$ is odd and not increasing if $i$ is even. For each $n\ge N(Y)$, we construct a trigonometric polynomial $P_n$ of order $\le n$ changing its monotonicity at the same points $y_i\in Y$ as $f$ and such that
$$ \|f-P_n\|\le c(s) \omega_2(f,\frac\pi n), $$
where $N(Y)$ is a constant depending only on $Y$, $c(s)$ is a constant depending only on $s$, $\omega_2(f, \cdot )$ is the modulus of continuity of second order of the function $f$, and ${\|\cdot\|}$ is the $\max$-norm.

Keywords: periodic function, comonotone approximation, trigonometric polynomial, Jackson-type kernel, Whitney's inequality, modulus of continuity

DOI: https://doi.org/10.4213/mzm6357

Full text: PDF file (521 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2008, 84:5, 664–672

Bibliographic databases:

UDC: 517.5
Received: 08.11.2006

Citation: G. A. Dzyubenko, M. G. Pleshakov, “Comonotone Approximation of Periodic Functions”, Mat. Zametki, 84:5 (2008), 713–723; Math. Notes, 84:5 (2008), 664–672

Citation in format AMSBIB
\Bibitem{DzyPle08}
\by G.~A.~Dzyubenko, M.~G.~Pleshakov
\paper Comonotone Approximation of Periodic Functions
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 5
\pages 713--723
\mathnet{http://mi.mathnet.ru/mz6357}
\crossref{https://doi.org/10.4213/mzm6357}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2500637}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 5
\pages 664--672
\crossref{https://doi.org/10.1134/S0001434608110072}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000262855600007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749105377}


Linking options:
  • http://mi.mathnet.ru/eng/mz6357
  • https://doi.org/10.4213/mzm6357
  • http://mi.mathnet.ru/eng/mz/v84/i5/p713

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers
  • Математические заметки Mathematical Notes
    Number of views:
    This page:251
    Full text:85
    References:36
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020