Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1980, Volume 28, Issue 5, Pages 727–736 (Mi mz6403)  

This article is cited in 13 scientific papers (total in 13 papers)

Mean $\varepsilon$-dimension of the functional class $B_{G,p}$

Đinh Dung

M. V. Lomonosov Moscow State University

Full text: PDF file (646 kB)

English version:
Mathematical Notes, 1980, 28:5, 818–823

Bibliographic databases:

UDC: 517.5
Received: 19.04.1979

Citation: Ðinh Dung, “Mean $\varepsilon$-dimension of the functional class $B_{G,p}$”, Mat. Zametki, 28:5 (1980), 727–736; Math. Notes, 28:5 (1980), 818–823

Citation in format AMSBIB
\Bibitem{Din80}
\by {\DJ}inh~Dung
\paper Mean $\varepsilon$-dimension of the functional class $B_{G,p}$
\jour Mat. Zametki
\yr 1980
\vol 28
\issue 5
\pages 727--736
\mathnet{http://mi.mathnet.ru/mz6403}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=599868}
\zmath{https://zbmath.org/?q=an:0462.42014}
\transl
\jour Math. Notes
\yr 1980
\vol 28
\issue 5
\pages 818--823
\crossref{https://doi.org/10.1007/BF01141088}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1980LZ01100009}


Linking options:
  • http://mi.mathnet.ru/eng/mz6403
  • http://mi.mathnet.ru/eng/mz/v28/i5/p727

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Tikhomirov, “Widths and entropy”, Russian Math. Surveys, 38:4 (1983), 101–111  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. G. G. Magaril-Il'yaev, “$\varphi$-mean diameters of classes of functions on the line”, Russian Math. Surveys, 45:2 (1990), 218–219  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. N. A. Strelkov, “Projection-net widths and lattice packings”, Math. USSR-Sb., 74:1 (1993), 251–269  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. G. G. Magaril-Il'yaev, “Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line”, Math. USSR-Sb., 74:2 (1993), 381–403  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. V. M. Tikhomirov, “Harmonic tools for approximation and splines on locally compact Abelian groups”, Russian Math. Surveys, 49:3 (1994), 200–201  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    6. V. M. Tikhomirov, “Harmonics and splines as optimal tools for approximation and recovery”, Russian Math. Surveys, 50:2 (1995), 355–402  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. N. A. Strelkov, “Hermitian widths, mean dimension, and multiple packings”, Sb. Math., 187:1 (1996), 119–139  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. Zelik, SV, “Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity”, Communications on Pure and Applied Mathematics, 56:5 (2003), 584  crossref  isi
    9. Liu, YP, “Relative average widths of Sobolev spaces in L-2(R-d)”, Analysis Mathematica, 34:1 (2008), 71  crossref  isi
    10. Liu, YP, “THE RESEARCH PROGRESS OF BNU GROUP ON RELATIVE WIDTHS”, International Journal of Wavelets Multiresolution and Information Processing, 7:6 (2009), 803  crossref  isi
    11. Bazarkhanov, DB, “Estimates for certain approximation characteristics of Nikol'skii-Besov spaces with generalized mixed smoothness”, Doklady Mathematics, 79:3 (2009), 305  crossref  isi
    12. Chernov A. Dung D., “New Explicit-in-Dimension Estimates For the Cardinality of High-Dimensional Hyperbolic Crosses and Approximation of Functions Having Mixed Smoothness”, J. Complex., 32:1 (2016), 92–121  crossref  isi
    13. Vakarchuk S.B., “Generalized Characteristics of Smoothness and Some Extreme Problems of the Approximation Theory of Functions in the Space l-2(). II”, Ukr. Math. J., 70:10 (2019), 1550–1584  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:162
    Full text:71
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021