RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2008, Volume 84, Issue 6, Pages 803–808 (Mi mz6565)  

This article is cited in 8 scientific papers (total in 8 papers)

Majorization Principles for Meromorphic Functions

V. N. Dubinin

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences

Abstract: Supplements to the Lindelöf principle on the behavior of Green's function and the Nevanlinna principle on the behavior of the harmonic measure under meromorphic maps are proposed; these supplements go back to Mityuk's work on the change of the inner radius of a domain under the action of regular functions.

Keywords: Lindelöf principle, Nevanlinna majorization principle, meromorphic function, harmonic measure, Green's function, subharmonic function

DOI: https://doi.org/10.4213/mzm6565

Full text: PDF file (426 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2008, 84:6, 751–755

Bibliographic databases:

UDC: 517.54
Received: 14.03.2008

Citation: V. N. Dubinin, “Majorization Principles for Meromorphic Functions”, Mat. Zametki, 84:6 (2008), 803–808; Math. Notes, 84:6 (2008), 751–755

Citation in format AMSBIB
\Bibitem{Dub08}
\by V.~N.~Dubinin
\paper Majorization Principles for Meromorphic Functions
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 6
\pages 803--808
\mathnet{http://mi.mathnet.ru/mz6565}
\crossref{https://doi.org/10.4213/mzm6565}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2492797}
\zmath{https://zbmath.org/?q=an:1219.30013}
\elib{http://elibrary.ru/item.asp?id=11918567}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 6
\pages 751--755
\crossref{https://doi.org/10.1134/S0001434608110199}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000262855600019}
\elib{http://elibrary.ru/item.asp?id=13586507}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749090995}


Linking options:
  • http://mi.mathnet.ru/eng/mz6565
  • https://doi.org/10.4213/mzm6565
  • http://mi.mathnet.ru/eng/mz/v84/i6/p803

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. N. Dubinin, “On I. P. Mityuk's results on the the behavior of the inner radius of a domain and the condenser's capacity under regular mappings”, J. Math. Sci. (N. Y.), 166:2 (2010), 145–154  mathnet  crossref  elib
    2. V. N. Dubinin, “Boundary values of the Schwarzian derivative of a regular function”, Sb. Math., 202:5 (2011), 649–663  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. V. N. Dubinin, S. I. Kalmukov, “On polynomials with constraints on circular arcs”, J. Math. Sci. (N. Y.), 184:6 (2012), 703–708  mathnet  crossref
    4. V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. V. N. Dubinin, “On the Jenkins covering circle theorem for holomorphic functions in a disk”, J. Math. Sci. (N. Y.), 200:5 (2014), 551–558  mathnet  crossref
    6. S. I. Kalmykov, “On polynomials and rational functions normalized on the circular arcs”, J. Math. Sci. (N. Y.), 200:5 (2014), 577–585  mathnet  crossref
    7. Pouliasis S., Ransford T., “on the Harmonic Measure and Capacity of Rational Lemniscates”, Potential Anal., 44:2 (2016), 249–261  crossref  mathscinet  zmath  isi  scopus
    8. V. N. Dubinin, “Geometric estimates for the Schwarzian derivative”, Russian Math. Surveys, 72:3 (2017), 479–511  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:378
    Full text:110
    References:50
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020