RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1968, Volume 3, Issue 1, Pages 21–32 (Mi mz6647)  

This article is cited in 7 scientific papers (total in 7 papers)

Finite solvable groups with nilpotent 2-maximal subgroups

V. A. Belonogov

V. A. Steklov Institute of Mathematics, Sverdlovsk Branch of the Academy of Sciences of USSR

Abstract: In this article we describe finite solvable groups whose 2-maximal subgroups are nilpotent (a 2-maximal subgroup of a group). Unsolvable groups with this property were described in [2, 3].

Full text: PDF file (924 kB)

English version:
Mathematical Notes, 1968, 3:1, 15–21

Bibliographic databases:

UDC: 512.4
Received: 31.07.1967

Citation: V. A. Belonogov, “Finite solvable groups with nilpotent 2-maximal subgroups”, Mat. Zametki, 3:1 (1968), 21–32; Math. Notes, 3:1 (1968), 15–21

Citation in format AMSBIB
\Bibitem{Bel68}
\by V.~A.~Belonogov
\paper Finite solvable groups with nilpotent 2-maximal subgroups
\jour Mat. Zametki
\yr 1968
\vol 3
\issue 1
\pages 21--32
\mathnet{http://mi.mathnet.ru/mz6647}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=223445}
\zmath{https://zbmath.org/?q=an:0187.29504}
\transl
\jour Math. Notes
\yr 1968
\vol 3
\issue 1
\pages 15--21
\crossref{https://doi.org/10.1007/BF01386958}


Linking options:
  • http://mi.mathnet.ru/eng/mz6647
  • http://mi.mathnet.ru/eng/mz/v3/i1/p21

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Guo Wenbin, E. V. Legchekova, A. N. Skiba, “Finite Groups in Which Every 3-Maximal Subgroup Commutes with All Maximal Subgroups”, Math. Notes, 86:3 (2009), 325–332  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. W. Guo, Yu. V. Lutsenko, A. N. Skiba, “On nonnilpotent groups in which every two 3-maximal subgroups are permutable”, Siberian Math. J., 50:6 (2009), 988–997  mathnet  crossref  mathscinet  isi
    3. V. S. Monakhov, D. V. Gritsuk, “O proizvodnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy s zadannoi $\pi$-khollovoi podgruppoi”, Tr. IMM UrO RAN, 19, no. 3, 2013, 215–223  mathnet  mathscinet  elib
    4. V. A. Belonogov, “Finite groups in which all $2$-maximal subgroups are $\pi$-decomposable”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 26–41  mathnet  crossref  mathscinet  isi  elib
    5. V. A. Kovaleva, Xiaolan Yi, “Finite groups with all $n$-maximal ($n = 2, 3$) subgroups $K$-$\mathfrak{U}$-subnormal”, PFMT, 2014, no. 2(19), 59–63  mathnet
    6. V. A. Kovaleva, “Konechnye gruppy s zadannymi obobschenno maksimalnymi podgruppami (obzor). II. Ot maksimalnykh tsepei k maksimalnym param”, PFMT, 2017, no. 2(31), 55–65  mathnet
    7. V. N. Tyutyanov, “Prostye neabelevy gruppy s pronormalnymi vtorymi maksimalnymi podgruppami”, PFMT, 2019, no. 3(40), 104–106  mathnet
  • Математические заметки Mathematical Notes
    Number of views:
    This page:285
    Full text:107
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020