RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1968, Volume 3, Issue 4, Pages 387–394 (Mi mz6693)  

Mathematical expectations of functions of sums of a random number of independent terms

B. A. Sevast'yanov

Steklov Mathematical Institute, Academy of Sciences of USSR

Abstract: Conditions are found which must be imposed on a function $g(x)$, in order that $Mg(\xi_1+\xi_2+…+\xi_\nu)<\infty$, if $Mg(\xi_i)<\infty$ and $Mg(\nu)<\infty$, $\nu,\xi_1,\xi_2,…,\xi_n,…$ being non-negative and independent, $\nu$ being integral, and $\{\xi_i\}$ being identically distributed. The result is applied to the theory of branching processes.

Full text: PDF file (542 kB)

English version:
Mathematical Notes, 1968, 3:4, 247–251

Bibliographic databases:

UDC: 519.2
Received: 04.01.1968

Citation: B. A. Sevast'yanov, “Mathematical expectations of functions of sums of a random number of independent terms”, Mat. Zametki, 3:4 (1968), 387–394; Math. Notes, 3:4 (1968), 247–251

Citation in format AMSBIB
\Bibitem{Sev68}
\by B.~A.~Sevast'yanov
\paper Mathematical expectations of functions of sums of a~random number of independent terms
\jour Mat. Zametki
\yr 1968
\vol 3
\issue 4
\pages 387--394
\mathnet{http://mi.mathnet.ru/mz6693}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=225359}
\zmath{https://zbmath.org/?q=an:0253.60058}
\transl
\jour Math. Notes
\yr 1968
\vol 3
\issue 4
\pages 247--251
\crossref{https://doi.org/10.1007/BF01159939}


Linking options:
  • http://mi.mathnet.ru/eng/mz6693
  • http://mi.mathnet.ru/eng/mz/v3/i4/p387

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:280
    Full text:76
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020