RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1968, Volume 3, Issue 6, Pages 693–702 (Mi mz6730)  

This article is cited in 5 scientific papers (total in 5 papers)

On a theorem of G. Szegö

I. A. Ibragimov

Leningrad State University named after A. A. Zhdanov

Abstract: It is shown that the precise result of G. Szegö on the asymptotic behavior of the Toeplitz determinants $D_n(f)$, generated by the nonnegative summable function of $f(\lambda)$ holds if $\ln f\in L_1(-\pi,\pi)$.

Full text: PDF file (599 kB)

English version:
Mathematical Notes, 1968, 3:6, 442–448

Bibliographic databases:

UDC: 517.5
Received: 11.09.1967

Citation: I. A. Ibragimov, “On a theorem of G. Szegö”, Mat. Zametki, 3:6 (1968), 693–702; Math. Notes, 3:6 (1968), 442–448

Citation in format AMSBIB
\Bibitem{Ibr68}
\by I.~A.~Ibragimov
\paper On a~theorem of G.~Szeg\"o
\jour Mat. Zametki
\yr 1968
\vol 3
\issue 6
\pages 693--702
\mathnet{http://mi.mathnet.ru/mz6730}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=231114}
\zmath{https://zbmath.org/?q=an:0186.12201}
\transl
\jour Math. Notes
\yr 1968
\vol 3
\issue 6
\pages 442--448
\crossref{https://doi.org/10.1007/BF01110603}


Linking options:
  • http://mi.mathnet.ru/eng/mz6730
  • http://mi.mathnet.ru/eng/mz/v3/i6/p693

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. L. Golinskii, I. A. Ibragimov, “On Szegö's limit theorem”, Math. USSR-Izv., 5:2 (1971), 421–444  mathnet  crossref  mathscinet  zmath
    2. Ya. L. Geronimus, “G. Szegö's limit relation and properties of the corresponding orthogonal polynomials”, Math. USSR-Izv., 7:5 (1973), 1185–1198  mathnet  crossref  mathscinet  zmath
    3. I. Yu. Linnik, “A multidimensional analog of a limit theorem of G. Szegö”, Math. USSR-Izv., 9:6 (1975), 1323–1332  mathnet  crossref  mathscinet  zmath
    4. V. S. Vladimirov, I. V. Volovich, “A statistical physics model”, Theoret. and Math. Phys., 54:1 (1983), 1–12  mathnet  crossref  mathscinet  isi
    5. J. Math. Sci. (N. Y.), 219:5 (2016), 714–730  mathnet  crossref  mathscinet
  • Математические заметки Mathematical Notes
    Number of views:
    This page:278
    Full text:124
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020