RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1969, Volume 5, Issue 5, Pages 561–568 (Mi mz6868)  

This article is cited in 4 scientific papers (total in 4 papers)

Elimination of recursion schemas in the Grzegorczyk $\mathscr E^2$ class

S. S. Marchenkov

M. V. Lomonosov Moscow State University

Abstract: The existence of a finite basis with respect to composition in the $\mathscr E^2$ class of Grzegorczyk classification is proved.

Full text: PDF file (490 kB)

English version:
Mathematical Notes, 1969, 5:5, 336–340

Bibliographic databases:

UDC: 51.01.16
Received: 04.07.1968

Citation: S. S. Marchenkov, “Elimination of recursion schemas in the Grzegorczyk $\mathscr E^2$ class”, Mat. Zametki, 5:5 (1969), 561–568; Math. Notes, 5:5 (1969), 336–340

Citation in format AMSBIB
\Bibitem{Mar69}
\by S.~S.~Marchenkov
\paper Elimination of recursion schemas in the Grzegorczyk $\mathscr E^2$ class
\jour Mat. Zametki
\yr 1969
\vol 5
\issue 5
\pages 561--568
\mathnet{http://mi.mathnet.ru/mz6868}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=252225}
\zmath{https://zbmath.org/?q=an:0187.27701}
\transl
\jour Math. Notes
\yr 1969
\vol 5
\issue 5
\pages 336--340
\crossref{https://doi.org/10.1007/BF01112182}


Linking options:
  • http://mi.mathnet.ru/eng/mz6868
  • http://mi.mathnet.ru/eng/mz/v5/i5/p561

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Solovyev V., “Algebras of Recursive Functions”, Recursion Theory and Complexity, Degruyter Series in Logic and its Applications, 2, ed. Arslanov M. Lempp S., Walter de Gruyter & Co, 1999, 193–214  isi
    2. S. S. Marchenkov, “On the complexity of the $\mathscr E^2$ Grzegorczyk class”, Discrete Math. Appl., 20:1 (2010), 61–73  mathnet  crossref  crossref  mathscinet  zmath  elib
    3. S. S. Marchenkov, “Bounded prefix concatenation operation and finite bases with respect to the superposition”, Discrete Math. Appl., 27:5 (2017), 303–309  mathnet  crossref  crossref  mathscinet  isi  elib
    4. S. S. Marchenkov, “On the operations of bounded suffix summation and multiplication”, J. Appl. Industr. Math., 11:4 (2017), 545–553  mathnet  crossref  crossref  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:136
    Full text:58
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019