RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1969, Volume 6, Issue 1, Pages 65–72 (Mi mz6898)  

This article is cited in 2 scientific papers (total in 2 papers)

Self-adjoint abstract differential operators

M. M. Gekhtman

M. V. Lomonosov Moscow State University

Abstract: Let $H$ be an abstract separable Hilbert space. We will consider the Hilbert space $H_1$ whose elements are functions $f(x)$ with domain $H$ and we will also consider the set of self-adjoint operators $Q(x)$ in $H$ of the form $Q(x)=A+B(x)$. In this formula $A\ge E$, $B(x)\ge0$, and the operator $B(x)$ is bounded for all $x$. An operator $L_0$ is defined on the set of finite, infinitely differentiable (in the strong sense) functions $y(x)\inH_1$ according to the formula: $L_0y=-y"+Q(x)y$ $(-\infty<x<\infty)$. It is proved that the closure of the operator $L_0$ is a self-adjoint operator in $H_1$ under the given assumptions.

Full text: PDF file (497 kB)

English version:
Mathematical Notes, 1969, 6:1, 498–502

Bibliographic databases:

UDC: 513.88
Received: 07.02.1968

Citation: M. M. Gekhtman, “Self-adjoint abstract differential operators”, Mat. Zametki, 6:1 (1969), 65–72; Math. Notes, 6:1 (1969), 498–502

Citation in format AMSBIB
\Bibitem{Gek69}
\by M.~M.~Gekhtman
\paper Self-adjoint abstract differential operators
\jour Mat. Zametki
\yr 1969
\vol 6
\issue 1
\pages 65--72
\mathnet{http://mi.mathnet.ru/mz6898}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=254667}
\zmath{https://zbmath.org/?q=an:0188.21002|0182.18404}
\transl
\jour Math. Notes
\yr 1969
\vol 6
\issue 1
\pages 498--502
\crossref{https://doi.org/10.1007/BF01450253}


Linking options:
  • http://mi.mathnet.ru/eng/mz6898
  • http://mi.mathnet.ru/eng/mz/v6/i1/p65

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. M. Gekhtman, “On the spectrum of an operator Sturm–Liouville equation”, Funct. Anal. Appl., 6:2 (1972), 151–152  mathnet  crossref  mathscinet  zmath
    2. A. G. Brusentsev, F. S. Rofe-Beketov, “Selfadjointness conditions for strongly elliptic systems of arbitrary order”, Math. USSR-Sb., 24:1 (1974), 103–126  mathnet  crossref  mathscinet  zmath
  • Математические заметки Mathematical Notes
    Number of views:
    This page:171
    Full text:64
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020