RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1969, Volume 6, Issue 2, Pages 173–179 (Mi mz6920)  

This article is cited in 1 scientific paper (total in 1 paper)

A class of completely continuous operators in a Hilbert space of entire functions of exponential type

V. Ya. Lin


Abstract: Any positive Borel measure $\mu$ in $R^n$ which satisfies the condition $\sup\limits_y\mu\{x\in R^n\mid|x-y|\le1\}<\infty$ generates a Hermitian bilinear form in the Hilbert space of entire functions $f\colon C^n\to C^1$ of exponential type not exceedingtau which are square-summable on $R^n$. In this paper a criterion is given for the complete continuity of this form.

Full text: PDF file (428 kB)

English version:
Mathematical Notes, 1969, 6:2, 563–566

Bibliographic databases:

UDC: 513.88
Received: 16.12.1968

Citation: V. Ya. Lin, “A class of completely continuous operators in a Hilbert space of entire functions of exponential type”, Mat. Zametki, 6:2 (1969), 173–179; Math. Notes, 6:2 (1969), 563–566

Citation in format AMSBIB
\Bibitem{Lin69}
\by V.~Ya.~Lin
\paper A~class of completely continuous operators in a~Hilbert space of entire functions of exponential type
\jour Mat. Zametki
\yr 1969
\vol 6
\issue 2
\pages 173--179
\mathnet{http://mi.mathnet.ru/mz6920}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=251578}
\zmath{https://zbmath.org/?q=an:0189.43202|0181.13701}
\transl
\jour Math. Notes
\yr 1969
\vol 6
\issue 2
\pages 563--566
\crossref{https://doi.org/10.1007/BF01093698}


Linking options:
  • http://mi.mathnet.ru/eng/mz6920
  • http://mi.mathnet.ru/eng/mz/v6/i2/p173

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. I. Glazman, “Spectral theory of differential-difference operators”, Funct. Anal. Appl., 11:4 (1977), 307–309  mathnet  crossref  mathscinet  zmath
  • Математические заметки Mathematical Notes
    Number of views:
    This page:186
    Full text:89
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020