RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1969, Volume 6, Issue 5, Pages 533–540 (Mi mz6960)  

This article is cited in 1 scientific paper (total in 1 paper)

Self-injective rings and endomorphisms of free modules

V. I. Gemintern

M. V. Lomonosov Moscow State University

Abstract: It is shown that the ring of endomorphisms of an arbitrary free $R$-module is right self-injective if and only if $R$ is quasi-Frobenius.

Full text: PDF file (584 kB)

English version:
Mathematical Notes, 1969, 6:5, 776–780

Bibliographic databases:

UDC: 512.4
Received: 28.10.1968

Citation: V. I. Gemintern, “Self-injective rings and endomorphisms of free modules”, Mat. Zametki, 6:5 (1969), 533–540; Math. Notes, 6:5 (1969), 776–780

Citation in format AMSBIB
\Bibitem{Gem69}
\by V.~I.~Gemintern
\paper Self-injective rings and endomorphisms of free modules
\jour Mat. Zametki
\yr 1969
\vol 6
\issue 5
\pages 533--540
\mathnet{http://mi.mathnet.ru/mz6960}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=257133}
\zmath{https://zbmath.org/?q=an:0195.32603|0189.03903}
\transl
\jour Math. Notes
\yr 1969
\vol 6
\issue 5
\pages 776--780
\crossref{https://doi.org/10.1007/BF01101403}


Linking options:
  • http://mi.mathnet.ru/eng/mz6960
  • http://mi.mathnet.ru/eng/mz/v6/i5/p533

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. M. Brodskii, “Endomorphism rings of free modules”, Math. USSR-Sb., 23:2 (1974), 215–231  mathnet  crossref  mathscinet  zmath
  • Математические заметки Mathematical Notes
    Number of views:
    This page:255
    Full text:67
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020