RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1970, Volume 8, Issue 5, Pages 607–618 (Mi mz7008)  

Convergence of Riemann sums for functions which can be represented by trigonometric series with coefficients forming a monotonic sequence

B. V. Pannikov

V. A. Steklov Mathematical Institute, USSR Academy of Sciences

Abstract: The following theorem is proved. If
$$ f(x)=\frac{a_0}2\sum_{k=1}^\infty a_k\cos2\pi kx+b_k\sin2\pi kx $$
where $a_k\downarrow0$ and $b_k\downarrow0$, then
$$ \lim_{n\to\infty}\frac1n\sum_{s=0}^{n-1}f(x+\frac sn)=\frac{a_0}2 $$
on $(0,1)$ in the sense of convergence in measure. If in addition $f(x)\in L^2(0,1)$, then this relation holds for almost all $x$.

Full text: PDF file (610 kB)

English version:
Mathematical Notes, 1970, 8:5, 810–816

Bibliographic databases:

UDC: 517.5
Received: 12.12.1969

Citation: B. V. Pannikov, “Convergence of Riemann sums for functions which can be represented by trigonometric series with coefficients forming a monotonic sequence”, Mat. Zametki, 8:5 (1970), 607–618; Math. Notes, 8:5 (1970), 810–816

Citation in format AMSBIB
\Bibitem{Pan70}
\by B.~V.~Pannikov
\paper Convergence of Riemann sums for functions which can be represented by trigonometric series with coefficients forming a~monotonic sequence
\jour Mat. Zametki
\yr 1970
\vol 8
\issue 5
\pages 607--618
\mathnet{http://mi.mathnet.ru/mz7008}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=277990}
\zmath{https://zbmath.org/?q=an:0216.09401|0205.07304}
\transl
\jour Math. Notes
\yr 1970
\vol 8
\issue 5
\pages 810--816
\crossref{https://doi.org/10.1007/BF01146937}


Linking options:
  • http://mi.mathnet.ru/eng/mz7008
  • http://mi.mathnet.ru/eng/mz/v8/i5/p607

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:119
    Full text:52
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020