RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1973, Volume 14, Issue 1, Pages 143–156 (Mi mz7215)  

This article is cited in 1 scientific paper (total in 1 paper)

Class of algebras of primitive recursive functions

V. L. Mikheev

Chuvash State University

Abstract: In this paper Robinson's algebra is embedded in a countable class of algebras of primitive recursive functions. Each algebra of this class contains the operations of addition and composition of functions and also one of the operations $i_a$ which are defined as follows: $g(x)=i_af(x)$ ($a=0,1,2,…$) if $g(x)$ satisfies the equations $g(0)=a$, $g(x+1)=f(g(x))$. In this paper we study the properties possessed by all or almost all the algebras of this class.

Full text: PDF file (994 kB)

English version:
Mathematical Notes, 1973, 14:1, 638–645

Bibliographic databases:

UDC: 519.9
Received: 20.12.1970

Citation: V. L. Mikheev, “Class of algebras of primitive recursive functions”, Mat. Zametki, 14:1 (1973), 143–156; Math. Notes, 14:1 (1973), 638–645

Citation in format AMSBIB
\Bibitem{Mik73}
\by V.~L.~Mikheev
\paper Class of algebras of primitive recursive functions
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 1
\pages 143--156
\mathnet{http://mi.mathnet.ru/mz7215}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=337542}
\zmath{https://zbmath.org/?q=an:0285.02035}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 1
\pages 638--645
\crossref{https://doi.org/10.1007/BF01095786}


Linking options:
  • http://mi.mathnet.ru/eng/mz7215
  • http://mi.mathnet.ru/eng/mz/v14/i1/p143

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. S. Marchenkov, “On maximal subalgebras of the algebras of unary recursive functions”, J. Appl. Industr. Math., 10:3 (2016), 380–385  mathnet  crossref  crossref  mathscinet  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:108
    Full text:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019