|
This article is cited in 6 scientific papers (total in 6 papers)
Automorphisms of the tensor product of Abelian and Grassmannian algebras
V. F. Pakhomov M. V. Lomonosov Moscow State University
Abstract:
We consider an algebra $\mathfrak B_{n,m}$, over the field $R$ with $n+m$ generators $x_1,\dots,x_n,\xi_1,\dots,\xi_m$, satisfying the following relations:
\begin{gather}
[x_k,x_l]\equiv x_kx_l-x_lx_k=0,\quad[x_k,\xi_i]=0,
\tag{1</nomathmode><mathmode>$'$}
\{\xi_i,\xi_j\}\equiv\xi_i\xi_j+\xi_j\xi_i=0,
\tag{2$'$}
\end{gather} </mathmode><nomathmode>
where $k,l=1,\dots,n$ and $i,j=1,\dots,m$. In this algebra we define differentiation, integration, and also a group of automorphisms. We obtain an integration equation invariant with respect to this group, which coincides in the case $m=0$ with the equation for the change of variables in an integral, an equation whichis well known in ordinary analysis; in the case $n=0$ our equation coincides with F. A. Berezin's result [1–3] for integration over a Grassman algebra.
Full text:
PDF file (564 kB)
English version:
Mathematical Notes, 1974, 16:1, 624–629
Bibliographic databases:
UDC:
512 Received: 07.12.1973
Citation:
V. F. Pakhomov, “Automorphisms of the tensor product of Abelian and Grassmannian algebras”, Mat. Zametki, 16:1 (1974), 65–74; Math. Notes, 16:1 (1974), 624–629
Citation in format AMSBIB
\Bibitem{Pak74}
\by V.~F.~Pakhomov
\paper Automorphisms of the tensor product of Abelian and Grassmannian algebras
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 1
\pages 65--74
\mathnet{http://mi.mathnet.ru/mz7436}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=357513}
\zmath{https://zbmath.org/?q=an:0327.15032}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 1
\pages 624--629
\crossref{https://doi.org/10.1007/BF01098815}
Linking options:
http://mi.mathnet.ru/eng/mz7436 http://mi.mathnet.ru/eng/mz/v16/i1/p65
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
D. A. Leites, “Ob odnom analoge opredelitelya”, UMN, 30:3(183) (1975), 156–156
-
B. L. Aneva, S. G. Mikhov, D. Ts. Stoyanov, “Some representations of the conformal superalgebra”, Theoret. and Math. Phys., 27:3 (1976), 502–508
-
V. P. Akulov, D. V. Volkov, V. A. Soroka, “Generally covariant theories of gauge fields on superspace”, Theoret. and Math. Phys., 31:1 (1977), 285–292
-
J. H. Bernstein, D. A. Leites, “Integral forms and the Stokes formula on supermanifolds”, Funct. Anal. Appl., 11:1 (1977), 45–47
-
D. A. Leites, “Introduction to the theory of supermanifolds”, Russian Math. Surveys, 35:1 (1980), 1–64
-
V. P. Akulov, I. A. Bandos, V. G. Zima, “Nonlinear realization of extended superconformal symmetry”, Theoret. and Math. Phys., 56:1 (1983), 635–642
|
| Number of views: |
| This page: | 161 | | Full text: | 58 | | First page: | 1 |
|