RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1974, Volume 16, Issue 6, Pages 933–942 (Mi mz7535)  

Annihilator conditions in endomorphism rings of modules

G. M. Brodskii

Yaroslavl State University

Abstract: The concepts of an intrinsically projective module and an intrinsically injective module are introduced and their connection with the presence of annihilator conditions in the endomorphism ring of a module is explained. It is shown that a ring $R$ is quasi-Frobenius if and only if in the endomorphism ring of any fully projective (or any fully injective) $R$-module it is true that $r(l(I))=I$ and $l(r(J))=J$ for all finitely generated right ideals $I$ and finitely generated left ideals $J$.

Full text: PDF file (748 kB)

English version:
Mathematical Notes, 1974, 16:6, 1153–1158

Bibliographic databases:

UDC: 519.4
Received: 18.02.1974

Citation: G. M. Brodskii, “Annihilator conditions in endomorphism rings of modules”, Mat. Zametki, 16:6 (1974), 933–942; Math. Notes, 16:6 (1974), 1153–1158

Citation in format AMSBIB
\Bibitem{Bro74}
\by G.~M.~Brodskii
\paper Annihilator conditions in endomorphism rings of modules
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 6
\pages 933--942
\mathnet{http://mi.mathnet.ru/mz7535}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=382336}
\zmath{https://zbmath.org/?q=an:0308.16017}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 6
\pages 1153--1158
\crossref{https://doi.org/10.1007/BF01098442}


Linking options:
  • http://mi.mathnet.ru/eng/mz7535
  • http://mi.mathnet.ru/eng/mz/v16/i6/p933

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:218
    Full text:64
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020