|
This article is cited in 3 scientific papers (total in 3 papers)
Locality of Quadratic Forms for Point Perturbations of Schrödinger Operators
K. V. Pankrashin A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
Abstract:
In this paper we study point perturbations of the Schrödinger operators within the framework of Krein's theory of self-adjoint extensions. A locality criterion for quadratic forms is proved for such perturbations.
DOI:
https://doi.org/10.4213/mzm754
Full text:
PDF file (232 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2001, 70:3, 384–391
Bibliographic databases:
UDC:
517.9 Received: 25.10.1999 Revised: 15.01.2001
Citation:
K. V. Pankrashin, “Locality of Quadratic Forms for Point Perturbations of Schrödinger Operators”, Mat. Zametki, 70:3 (2001), 425–433; Math. Notes, 70:3 (2001), 384–391
Citation in format AMSBIB
\Bibitem{Pan01}
\by K.~V.~Pankrashin
\paper Locality of Quadratic Forms for Point Perturbations of Schr\"odinger Operators
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 3
\pages 425--433
\mathnet{http://mi.mathnet.ru/mz754}
\crossref{https://doi.org/10.4213/mzm754}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1882252}
\zmath{https://zbmath.org/?q=an:1058.47007}
\elib{https://elibrary.ru/item.asp?id=13380117}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 3
\pages 384--391
\crossref{https://doi.org/10.1023/A:1012352029965}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000172164200010}
Linking options:
http://mi.mathnet.ru/eng/mz754https://doi.org/10.4213/mzm754 http://mi.mathnet.ru/eng/mz/v70/i3/p425
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Geyler, VA, “Zero modes in a system of Aharonov-Bohm fluxes”, Reviews in Mathematical Physics, 16:7 (2004), 851
-
Kurasov, P, “Finite speed of propagation and local boundary conditions for wave equations with point interactions”, Proceedings of the American Mathematical Society, 133:10 (2005), 3071
-
Helffer, B, “Semiclassical reduction for magnetic Schrodinger operator with periodic zero-range potentials and applications”, Asymptotic Analysis, 63:1–2 (2009), 1
|
Number of views: |
This page: | 225 | Full text: | 100 | References: | 31 | First page: | 1 |
|