|
Self-adjointness of the dirac operator in a space of vector functions
V. A. Bezverkhnii M. V. Lomonosov Moscow State University
Abstract:
This paper is devoted to the proof of the self-adjointness of the minimal operator defined on the space $L_2(-\infty,\infty;H)$ ($H$ being a separable Hilbert space) by the expression $l=iJ\frac d{dt}+A+B(t)$. The coefficients in this expression are self-adjoint operators on $H$, with $A$ being unbounded, $AJ+JA=0$, and the function $\|B(t)\|_H$ being assumed to lie in $L_2^{\operatorname{loc}}(-\infty,\infty)$. The result obtained is applicable to the Dirac operator.
Full text:
PDF file (297 kB)
English version:
Mathematical Notes, 1975, 18:1, 583–585
Bibliographic databases:
UDC:
517 Received: 23.04.1974
Citation:
V. A. Bezverkhnii, “Self-adjointness of the dirac operator in a space of vector functions”, Mat. Zametki, 18:1 (1975), 3–7; Math. Notes, 18:1 (1975), 583–585
Citation in format AMSBIB
\Bibitem{Bez75}
\by V.~A.~Bezverkhnii
\paper Self-adjointness of the dirac operator in a~space of vector functions
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 1
\pages 3--7
\mathnet{http://mi.mathnet.ru/mz7618}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=390826}
\zmath{https://zbmath.org/?q=an:0316.47019}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 1
\pages 583--585
\crossref{https://doi.org/10.1007/BF01461134}
Linking options:
http://mi.mathnet.ru/eng/mz7618 http://mi.mathnet.ru/eng/mz/v18/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 109 | Full text: | 55 | First page: | 1 |
|