RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1975, Volume 18, Issue 1, Pages 3–7 (Mi mz7618)  

Self-adjointness of the dirac operator in a space of vector functions

V. A. Bezverkhnii

M. V. Lomonosov Moscow State University

Abstract: This paper is devoted to the proof of the self-adjointness of the minimal operator defined on the space $L_2(-\infty,\infty;H)$ ($H$ being a separable Hilbert space) by the expression $l=iJ\frac d{dt}+A+B(t)$. The coefficients in this expression are self-adjoint operators on $H$, with $A$ being unbounded, $AJ+JA=0$, and the function $\|B(t)\|_H$ being assumed to lie in $L_2^{\operatorname{loc}}(-\infty,\infty)$. The result obtained is applicable to the Dirac operator.

Full text: PDF file (297 kB)

English version:
Mathematical Notes, 1975, 18:1, 583–585

Bibliographic databases:

UDC: 517
Received: 23.04.1974

Citation: V. A. Bezverkhnii, “Self-adjointness of the dirac operator in a space of vector functions”, Mat. Zametki, 18:1 (1975), 3–7; Math. Notes, 18:1 (1975), 583–585

Citation in format AMSBIB
\Bibitem{Bez75}
\by V.~A.~Bezverkhnii
\paper Self-adjointness of the dirac operator in a~space of vector functions
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 1
\pages 3--7
\mathnet{http://mi.mathnet.ru/mz7618}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=390826}
\zmath{https://zbmath.org/?q=an:0316.47019}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 1
\pages 583--585
\crossref{https://doi.org/10.1007/BF01461134}


Linking options:
  • http://mi.mathnet.ru/eng/mz7618
  • http://mi.mathnet.ru/eng/mz/v18/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:109
    Full text:55
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021