|
Separating diffeomorphisms of the torus
A. A. Gura Tula Polytechnical Institute
Abstract:
There exists a diffeomorphism on the $n$-dimensional torus $T^n$ which is conjugate with a hyperbolic linear automorphism, but is not an Anosov diffeomorphism. A diffeomorphism $f:T^n\to T^n$ has such a property if $f$ is separating and belongs to the $C_0$ closure of the Anosov diffeomorphisms.
Full text:
PDF file (607 kB)
English version:
Mathematical Notes, 1975, 18:1, 605–610
Bibliographic databases:
UDC:
517.9 Received: 14.01.1975
Citation:
A. A. Gura, “Separating diffeomorphisms of the torus”, Mat. Zametki, 18:1 (1975), 41–49; Math. Notes, 18:1 (1975), 605–610
Citation in format AMSBIB
\Bibitem{Gur75}
\by A.~A.~Gura
\paper Separating diffeomorphisms of the torus
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 1
\pages 41--49
\mathnet{http://mi.mathnet.ru/mz7623}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=402822}
\zmath{https://zbmath.org/?q=an:0311.58009}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 1
\pages 605--610
\crossref{https://doi.org/10.1007/BF01461139}
Linking options:
http://mi.mathnet.ru/eng/mz7623 http://mi.mathnet.ru/eng/mz/v18/i1/p41
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 169 | Full text: | 92 | First page: | 1 |
|