|
Uncomplemented uniform algebras
S. V. Kislyakov Leningrad State University
Abstract:
Let $A$ be a closed subalgebra of the algebra of all complex-valued continuous functions on a compact space $X$, and suppose $A$ contains the constant functions and separates points of $X$; let $I$ be a closed ideal of $A$ such that for some linear multiplicative functional $\varphi$ on $A$ we have the relation $0<\|\varphi|_I\|<1$ (for the existence of such an ideal it is sufficient that in the maximal ideal space of the algebra $A$ there exists a Gleason part consisting of at least two points). Then the Banach space $A^{**}$ is not injective [in particular, $A$ is not a complemented subspace of $C(X$)].
Full text:
PDF file (441 kB)
English version:
Mathematical Notes, 1974, 18:1, 637–639
Bibliographic databases:
UDC:
517 Received: 02.07.1974
Citation:
S. V. Kislyakov, “Uncomplemented uniform algebras”, Mat. Zametki, 18:1 (1975), 91–96; Math. Notes, 18:1 (1974), 637–639
Citation in format AMSBIB
\Bibitem{Kis75}
\by S.~V.~Kislyakov
\paper Uncomplemented uniform algebras
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 1
\pages 91--96
\mathnet{http://mi.mathnet.ru/mz7629}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=388106}
\zmath{https://zbmath.org/?q=an:0312.46062}
\transl
\jour Math. Notes
\yr 1974
\vol 18
\issue 1
\pages 637--639
\crossref{https://doi.org/10.1007/BF01461145}
Linking options:
http://mi.mathnet.ru/eng/mz7629 http://mi.mathnet.ru/eng/mz/v18/i1/p91
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 183 | Full text: | 83 | First page: | 1 |
|