RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 91, Issue 3, Pages 371–382 (Mi mz7836)  

This article is cited in 2 scientific papers (total in 2 papers)

The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings

O. V. Kamlovskii


Abstract: Using the method of trigonometric sums, Sidelnikov obtained estimates of the frequencies of occurrence of elements on segments of linear recurrence sequences over finite fields. These results are generalized to the case of Galois rings. It is shown that, in some cases, the estimates obtained in this paper are sharper than previously known ones.

Keywords: linear recurrence sequence, Galois ring, Galois polynomial, method of trigonometric sums, irreducible polynomial

DOI: https://doi.org/10.4213/mzm7836

Full text: PDF file (491 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 91:3, 354–363

Bibliographic databases:

UDC: 519.4
Received: 03.03.2009

Citation: O. V. Kamlovskii, “The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings”, Mat. Zametki, 91:3 (2012), 371–382; Math. Notes, 91:3 (2012), 354–363

Citation in format AMSBIB
\Bibitem{Kam12}
\by O.~V.~Kamlovskii
\paper The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 3
\pages 371--382
\mathnet{http://mi.mathnet.ru/mz7836}
\crossref{https://doi.org/10.4213/mzm7836}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201434}
\elib{http://elibrary.ru/item.asp?id=20731494}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 3
\pages 354--363
\crossref{https://doi.org/10.1134/S0001434612030054}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303478900005}
\elib{http://elibrary.ru/item.asp?id=18349053}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860369053}


Linking options:
  • http://mi.mathnet.ru/eng/mz7836
  • https://doi.org/10.4213/mzm7836
  • http://mi.mathnet.ru/eng/mz/v91/i3/p371

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. V. Kamlovskii, “Improved bounds for the number of occurrences of elements in linear recurrence sequences over Galois rings”, J. Math. Sci., 197:4 (2014), 512–524  mathnet  crossref
    2. O. V. Kamlovskii, “Neabsolyutnye otsenki dlya nepolnykh trigonometricheskikh summ ot lineinykh rekurrent i ikh prilozheniya”, Matem. vopr. kriptogr., 5:3 (2014), 17–34  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:273
    Full text:52
    References:31
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019