RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2001, Volume 70, Issue 5, Pages 769–779 (Mi mz788)  

This article is cited in 4 scientific papers (total in 4 papers)

General Linear Transformations of Hypergeometric Functions

A. W. Niukkanen

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Abstract: The notion of a canonical form is introduced for multiple hypergeometric series. This notion, in conjunction with the factorization method suggested earlier by the author, is used to obtain the most general explicit descriptions of linear transformations of multiple series that are of Gauss, Kummer, or Bessel type with respect to some variable $x_n$. A complete classification of the 34 Horn series according to their types and forms is given. It is used to show that the transformations described in this paper permit one to obtain the 147 single transformations of Horn series as well as quite a few repeated transformations. A computer program implementing these transformations is developed on the basis of the Maple V-4 computer algebra system.

DOI: https://doi.org/10.4213/mzm788

Full text: PDF file (224 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2001, 70:5, 698–707

Bibliographic databases:

UDC: 517.588+519.68
Received: 08.10.1998
Revised: 08.07.2001

Citation: A. W. Niukkanen, “General Linear Transformations of Hypergeometric Functions”, Mat. Zametki, 70:5 (2001), 769–779; Math. Notes, 70:5 (2001), 698–707

Citation in format AMSBIB
\Bibitem{Niu01}
\by A.~W.~Niukkanen
\paper General Linear Transformations of Hypergeometric Functions
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 5
\pages 769--779
\mathnet{http://mi.mathnet.ru/mz788}
\crossref{https://doi.org/10.4213/mzm788}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1882350}
\zmath{https://zbmath.org/?q=an:1027.33013}
\elib{http://elibrary.ru/item.asp?id=13361474}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 5
\pages 698--707
\crossref{https://doi.org/10.1023/A:1012939213033}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000173100200012}


Linking options:
  • http://mi.mathnet.ru/eng/mz788
  • https://doi.org/10.4213/mzm788
  • http://mi.mathnet.ru/eng/mz/v70/i5/p769

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Niukkanen, “Kvadratichnye preobrazovaniya gipergeometricheskikh ryadov ot mnogikh peremennykh”, Fundament. i prikl. matem., 8:2 (2002), 517–531  mathnet  mathscinet  zmath
    2. A. W. Niukkanen, O. S. Paramonova, “Linear Transformations and Reduction Formulas for the Gelfand Hypergeometric Functions Associated with the Grassmannians $G_{2,4}$ and $G_{3,6}$”, Math. Notes, 71:1 (2002), 80–89  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Niukkanen AW, “On the way to computerizable scientific knowledge (by the example of the operator factorization method)”, Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 502:2–3 (2003), 639–642  crossref  adsnasa  isi
    4. A. W. Niukkanen, “Transformation of the Triple Series of Gelfand, Graev, and Retakh into a Series of the Same Type and Related Problems”, Math. Notes, 89:3 (2011), 374–381  mathnet  crossref  crossref  mathscinet  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:304
    Full text:82
    References:22
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019