RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1977, Volume 21, Issue 5, Pages 605–614 (Mi mz7993)  

$T$-maps connected with Hartree's equation

A. M. Chebotarev

Moscow Institute of Electronic Engineering

Abstract: The singular potential in Hartree's equation is replaced by a converging almost-everywhere sequence of bounded functions. The solutions of the corresponding equations which are nonlinear equations of Hartree type are represented in the form of $T$-maps. The concept of a $T$-map was introduced earlier by Maslov. The strong convergence of a sequence of $T$-maps on a set dense in $L_2(R^3)$ is proved by the method of analytic continuation.

Full text: PDF file (694 kB)

English version:
Mathematical Notes, 1977, 21:5, 340–345

Bibliographic databases:

UDC: 517.432
Received: 08.04.1975

Citation: A. M. Chebotarev, “$T$-maps connected with Hartree's equation”, Mat. Zametki, 21:5 (1977), 605–614; Math. Notes, 21:5 (1977), 340–345

Citation in format AMSBIB
\Bibitem{Che77}
\by A.~M.~Chebotarev
\paper $T$-maps connected with Hartree's equation
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 5
\pages 605--614
\mathnet{http://mi.mathnet.ru/mz7993}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=463953}
\zmath{https://zbmath.org/?q=an:0398.35020|0365.35014}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 5
\pages 340--345
\crossref{https://doi.org/10.1007/BF01788229}


Linking options:
  • http://mi.mathnet.ru/eng/mz7993
  • http://mi.mathnet.ru/eng/mz/v21/i5/p605

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:131
    Full text:57
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020