RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1977, Volume 21, Issue 5, Pages 627–639 (Mi mz7995)  

This article is cited in 1 scientific paper (total in 1 paper)

Series of rational fractions with rapidly decreasing coefficients

T. A. Leont'eva

M. V. Lomonosov Moscow State University

Abstract: In [1] it was shown that if a function $f(z)$, analytic inside the unit disk, is representable by a series $\sum_{n=1}^\infty\frac{\mathscr A_n}{1-\lambda_nz}$ and if the coefficients $\mathscr A_n$ rapidly tend to zero, then $f(z)$ satisfies some functional equation $M_L(f)=0$. In the present paper the converse problem is solved. It is shown that if $f(z)$ satisfies the equation $M_L(f)=0$, then the expansion coefficients rapidly tend to zero.

Full text: PDF file (768 kB)

English version:
Mathematical Notes, 1977, 21:5, 353–360

Bibliographic databases:

UDC: 517.5
Received: 08.01.1976

Citation: T. A. Leont'eva, “Series of rational fractions with rapidly decreasing coefficients”, Mat. Zametki, 21:5 (1977), 627–639; Math. Notes, 21:5 (1977), 353–360

Citation in format AMSBIB
\Bibitem{Leo77}
\by T.~A.~Leont'eva
\paper Series of rational fractions with rapidly decreasing coefficients
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 5
\pages 627--639
\mathnet{http://mi.mathnet.ru/mz7995}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=460605}
\zmath{https://zbmath.org/?q=an:0399.30004|0362.30002}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 5
\pages 353--360
\crossref{https://doi.org/10.1007/BF01788231}


Linking options:
  • http://mi.mathnet.ru/eng/mz7995
  • http://mi.mathnet.ru/eng/mz/v21/i5/p627

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. B. Sherstyukov, “Dual characterization of absolutely representing systems in inductive limits of Banach spaces”, Siberian Math. J., 51:4 (2010), 745–754  mathnet  crossref  mathscinet  isi  elib  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:127
    Full text:58
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020