RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1977, Volume 21, Issue 5, Pages 653–664 (Mi mz7997)  

Some estimates of differentiable functions

Yu. V. Pokornyi

Voronezh State University

Abstract: Suppose that $x(t)\in C_{[a,b]}^{(n)}$ and has $n$ zeros at the points $a$ and $b$. It is shown that if $x^{(n)}(t)$ preserves sign on $[a,b]$, then
$$ |x(t)|\ge\frac{p_0}{(n-1)}[\sup\limits_{\tau\in(a,b)}\frac{|x(\tau)|}{(\tau-a)^{p-1}(b-\tau)^{q-1}}](t-a)^p(b-t)^q\quad(a<t<b), $$
where $p$ and $q$ are the multiplicities of the zeros of $x(t)$ at $a$ and $b$, respectively, and $p_0=\min\{p,q\}$. Two-sided estimates of the Green's function for a two-point interpolation problem for the operator $Lx\equiv x^{(n)}$ are established in the proof. As an application, new conditions for the solvability of de la Vallée Poussin's two-point boundary problems are obtained.

Full text: PDF file (783 kB)

English version:
Mathematical Notes, 1977, 21:5, 366–373

Bibliographic databases:

UDC: 517.5
Received: 12.07.1975

Citation: Yu. V. Pokornyi, “Some estimates of differentiable functions”, Mat. Zametki, 21:5 (1977), 653–664; Math. Notes, 21:5 (1977), 366–373

Citation in format AMSBIB
\Bibitem{Pok77}
\by Yu.~V.~Pokornyi
\paper Some estimates of differentiable functions
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 5
\pages 653--664
\mathnet{http://mi.mathnet.ru/mz7997}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=445047}
\zmath{https://zbmath.org/?q=an:0414.34012}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 5
\pages 366--373
\crossref{https://doi.org/10.1007/BF01788233}


Linking options:
  • http://mi.mathnet.ru/eng/mz7997
  • http://mi.mathnet.ru/eng/mz/v21/i5/p653

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:109
    Full text:57
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020