Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1977, Volume 22, Issue 1, Pages 13–21 (Mi mz8020)  

Generalized theorems of Liénard and Shepherd

G. F. Korsakov

Kaliningrad State University

Abstract: The paper considers a real polynomial $p(x)=a_0+a_1x+…+a_nx^n$ ($a_0>0$) for which there hold inequalities $\Delta_1>0, \Delta_3>0,…$ or $\Delta_2>0, \Delta_4>0$, where $\Delta_1,\Delta_2,…,\Delta_n$ are the Hurwitz determinants for polynomial $p(x)$. It is proven that polynomial $p(x)$ can have, in the right half-plane, only real roots, where the quantity of positive roots of polynomial $p(x)$ equals the quantity of changes of sign in the system of coefficients $a_0,a_2,…,a_n$, when $n$ is even, and $a_0,a_2,…,a_{n-1},a_n$, when $n$ is odd. From the proven theorem, in particular, there follows the Liénard and Shepherd criterion of stability.

Full text: PDF file (676 kB)

English version:
Mathematical Notes, 1977, 22:1, 498–503

Bibliographic databases:

UDC: 512
Received: 17.03.1975

Citation: G. F. Korsakov, “Generalized theorems of Liénard and Shepherd”, Mat. Zametki, 22:1 (1977), 13–21; Math. Notes, 22:1 (1977), 498–503

Citation in format AMSBIB
\Bibitem{Kor77}
\by G.~F.~Korsakov
\paper Generalized theorems of Li\'enard and Shepherd
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 1
\pages 13--21
\mathnet{http://mi.mathnet.ru/mz8020}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=476098}
\zmath{https://zbmath.org/?q=an:0442.26009}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 1
\pages 498--503
\crossref{https://doi.org/10.1007/BF01147688}


Linking options:
  • http://mi.mathnet.ru/eng/mz8020
  • http://mi.mathnet.ru/eng/mz/v22/i1/p13

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:477
    Full text:153
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021