Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1977, Volume 22, Issue 1, Pages 61–68 (Mi mz8025)  

One conservative extension of formal mathematic analysis with a scheme of dependent choice

A. M. Levin

M. V. Lomonosov Moscow State University

Abstract: This paper studies an extension of classical analysis, the language of which is obtained by adding to the language of analysis a two-place predicate symbol $\rho$. To the axioms of this extension, in addition to all the axioms of analysis (a convolution scheme is selected for all the formulas of the new language), there also belong a series of axioms asserting that relationship $\rho$ completely orders the class of all sets of natural numbers. It is proven that the theory described herein is a conservative extension of analysis with a scheme of dependent choice.

Full text: PDF file (635 kB)

English version:
Mathematical Notes, 1977, 22:1, 524–528

Bibliographic databases:

UDC: 517.1
Received: 09.12.1974

Citation: A. M. Levin, “One conservative extension of formal mathematic analysis with a scheme of dependent choice”, Mat. Zametki, 22:1 (1977), 61–68; Math. Notes, 22:1 (1977), 524–528

Citation in format AMSBIB
\Bibitem{Lev77}
\by A.~M.~Levin
\paper One conservative extension of formal mathematic analysis with a~scheme of dependent choice
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 1
\pages 61--68
\mathnet{http://mi.mathnet.ru/mz8025}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=491069}
\zmath{https://zbmath.org/?q=an:0377.02020}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 1
\pages 524--528
\crossref{https://doi.org/10.1007/BF01147693}


Linking options:
  • http://mi.mathnet.ru/eng/mz8025
  • http://mi.mathnet.ru/eng/mz/v22/i1/p61

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:188
    Full text:70
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021