Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1977, Volume 22, Issue 1, Pages 85–101 (Mi mz8028)  

The correctness problem for best approximations by trigonometric polynomials in the class $W_0^rH[\omega]_C$

A. V. Kroó

M. V. Lomonosov Moscow State University

Abstract: Suppose that $k$, $r\in Z_+$, $W_0^rH[\omega]_C=\{f:f is a $2\pi$-periodic function, f\in C^r[-\pi,\pi],\omega(f^{(r)},\delta)\le\omega(\delta)\}$, $T_k$ is the space of trigonometric polynomials of order $k$, $p_k(f)\in T_k$ is the polynomial of best uniform approximation to $f$, and $E_k(f)$ is the error of the best approximation. It is shown that for an arbitrary $\varepsilon>0$ we have,
\begin{gather*} \sup\limits_{f\in W_0^rH[\omega]_C}\sup\limits_{\substack{q_k\in T_k
\|f-q_k\|\le E_k(f)+\varepsilon}}\|p_k(f)-q_k\|_C\asymp R(\varepsilon),
\sup\limits_{f\in W_0^rH[\omega]_C}\sup\limits_{\substack{f_1\in C[-\pi,\pi]
\|f-f_1\|\le\varepsilon}}\|p_k(f)-p_k(f_1)\|_C\asymp R(\varepsilon), \end{gather*}
where for $0<\varepsilon\le\omega(1)$, $k>0$, $R(\varepsilon)$ is the root of the equation $R=(\varepsilon'R)^{r/(2k)}\omega((\varepsilon'R)^{1/(2k)})$, and for $k=0$ or $\varepsilon>\omega(1)$ we have $R(\varepsilon)=\varepsilon$.

Full text: PDF file (1034 kB)

English version:
Mathematical Notes, 1977, 22:1, 536–546

Bibliographic databases:

Received: 29.12.1975

Citation: A. V. Kroó, “The correctness problem for best approximations by trigonometric polynomials in the class $W_0^rH[\omega]_C$”, Mat. Zametki, 22:1 (1977), 85–101; Math. Notes, 22:1 (1977), 536–546

Citation in format AMSBIB
\Bibitem{Kro77}
\by A.~V.~Kro\'o
\paper The correctness problem for best approximations by trigonometric polynomials in the class $W_0^rH[\omega]_C$
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 1
\pages 85--101
\mathnet{http://mi.mathnet.ru/mz8028}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=447935}
\zmath{https://zbmath.org/?q=an:0361.42001}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 1
\pages 536--546
\crossref{https://doi.org/10.1007/BF01147696}


Linking options:
  • http://mi.mathnet.ru/eng/mz8028
  • http://mi.mathnet.ru/eng/mz/v22/i1/p85

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:110
    Full text:53
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021