RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1977, Volume 22, Issue 2, Pages 167–178 (Mi mz8038)  

The $C$-convexity of Banach spaces with unconditional bases

S. A. Rakov


Abstract: A Banach space is called $C$-convex if the space $c_0$ cannot be represented finitely in it. Necessary and sufficient conditions for the $C$-convexity of a space with an unconditional basis and of the product of a space $Y$ with respect to the unconditional basis of a space $X$ are obtained. These conditions are rendered concrete for two classes of spaces: The Orlich space of sequences is $C$-convex if and only if its normalizing function satisfies the $\Delta_2$-condition; the Lorentz space of sequences is $C$-convex if and only if its normalizing sequence satisfies the condition $\varliminf\limits_{n\to\infty}\sum_{i=1}^{2n}c_i/\sum_{i=1}^nc_i=1$.

Full text: PDF file (883 kB)

English version:
Mathematical Notes, 1977, 22:2, 584–591

Bibliographic databases:

UDC: 513.3
Received: 02.06.1975

Citation: S. A. Rakov, “The $C$-convexity of Banach spaces with unconditional bases”, Mat. Zametki, 22:2 (1977), 167–178; Math. Notes, 22:2 (1977), 584–591

Citation in format AMSBIB
\Bibitem{Rak77}
\by S.~A.~Rakov
\paper The $C$-convexity of Banach spaces with unconditional bases
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 2
\pages 167--178
\mathnet{http://mi.mathnet.ru/mz8038}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=463891}
\zmath{https://zbmath.org/?q=an:0358.46015}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 2
\pages 584--591
\crossref{https://doi.org/10.1007/BF01780965}


Linking options:
  • http://mi.mathnet.ru/eng/mz8038
  • http://mi.mathnet.ru/eng/mz/v22/i2/p167

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:137
    Full text:54
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020