RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1977, Volume 22, Issue 3, Pages 335–338 (Mi mz8053)  

Quasi-identities of certain finite algebras

V. P. Belkin

Novosibirsk State University

Abstract: In this note an example of a finite lattice not having a finite basis of quasiidentities and an analogous example for algebras of the type $\langle1,1\rangle$ are indicated.

Full text: PDF file (305 kB)

English version:
Mathematical Notes, 1977, 22:3, 676–678

Bibliographic databases:

UDC: 517.1
Received: 07.09.1976

Citation: V. P. Belkin, “Quasi-identities of certain finite algebras”, Mat. Zametki, 22:3 (1977), 335–338; Math. Notes, 22:3 (1977), 676–678

Citation in format AMSBIB
\Bibitem{Bel77}
\by V.~P.~Belkin
\paper Quasi-identities of certain finite algebras
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 3
\pages 335--338
\mathnet{http://mi.mathnet.ru/mz8053}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=485626}
\zmath{https://zbmath.org/?q=an:0362.08005}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 3
\pages 676--678
\crossref{https://doi.org/10.1007/BF02412493}


Linking options:
  • http://mi.mathnet.ru/eng/mz8053
  • http://mi.mathnet.ru/eng/mz/v22/i3/p335

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:129
    Full text:65
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020