Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1977, Volume 22, Issue 4, Pages 511–516 (Mi mz8072)  

A family of maximal subalgebras of R. Robinson's algebra

A. N. Degtev

Tyumen State University

Abstract: All maximal sub algebras of the algebra of primitive recursive functions $\langle\Phi;+,*,i\rangle$, whose basic sets contain the set
$$ A+\{f:f\equiv0\vee(\forall x)(x>0\Rightarrow f(x)>0)\} $$
are described. It is shown that they are continuum in number.

Full text: PDF file (409 kB)

English version:
Mathematical Notes, 1977, 22:4, 775–778

Bibliographic databases:

UDC: 517.1
Received: 17.12.1975

Citation: A. N. Degtev, “A family of maximal subalgebras of R. Robinson's algebra”, Mat. Zametki, 22:4 (1977), 511–516; Math. Notes, 22:4 (1977), 775–778

Citation in format AMSBIB
\Bibitem{Deg77}
\by A.~N.~Degtev
\paper A~family of maximal subalgebras of R.~Robinson's algebra
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 4
\pages 511--516
\mathnet{http://mi.mathnet.ru/mz8072}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=479990}
\zmath{https://zbmath.org/?q=an:0362.02029}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 4
\pages 775--778
\crossref{https://doi.org/10.1007/BF01146422}


Linking options:
  • http://mi.mathnet.ru/eng/mz8072
  • http://mi.mathnet.ru/eng/mz/v22/i4/p511

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:159
    Full text:56
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021